SEARCH

SEARCH BY CITATION

References

  • Albrechtsen H (1994) Distribution of bacteria, estimated by a viable count method, and heterotrophic activity in different size fractions of aquifer sediment. Geomicrobiol J 12: 253264.
  • Alfreider A, Krössbacher M & Psenner R (1997) Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Res 31: 832840.
  • Amy PS, Durham C, Hall D & Haldeman DL (1993) Starvation-survival of deep subsurface isolates. Curr Microbiol 26: 345352.
  • Athy LF (1930) Density, porosity, and compaction of sedimentary rocks. AAPG Bull 14: 124.
  • Bahr DB, Hutton EW, Syvitski JP & Pratson LF (2001) Exponential approximations to compacted sediment porosity profiles. Comput Geosci 27: 691700.
  • Basso O, Lascourrèges J, Jarry M & Magot M (2005) The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. Environ Microbiol 7: 1321.
  • Benjamin U & Nwachukwu J (2011) Model compaction equation for hydrostatic sandstones of the niger delta. Ife J Sci 13: 161174.
  • Borgonie G, García-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, Möller C, Erasmus M & Onstott T (2011) Nematoda from the terrestrial deep subsurface of South Africa. Nature 474: 7982.
  • Breuker A, Köweker G, Blazejak A & Schippers A (2011) The deep biosphere in terrestrial sediments in the Chesapeake Bay area, Virginia, USA. Front Microbiol 2: Article 156.
  • Chapman DS, Keho T, Bauer MS & Picard MD (1984) Heat flow in the Uinta Basin determined from bottom hole temperature (BHT) data. Geophysics 49: 453466.
  • Chivian D, Brodie EL, Alm EJ et al. (2008) Environmental genomics reveals a single-species ecosystem deep within Earth. Science 10: 275278.
  • Cozzarelli I & Weiss J (2007) Biogeochemistry of aquifer systems. Manual of Environmental Microbiology (Hurst C, Crawford R, Garland J, Lipson D, Mills A & Stetzenbach L, eds), pp. 843859. ASM Press, Washington, DC.
  • Ekendahl S & Pedersen K (1994) Carbon transformations by attached bacterial populations in granitic groundwater from deep crystalline bed-rock of the Stripa research mine. Microbiology 140: 15651573.
  • Foster S & Chilton P (2003) Groundwater: the processes and global significance of aquifer degradation. Philos Trans R Soc Lond B Biol Sci 358: 19571972.
  • Fredrickson JK, McKinley JP, Bjornstad BN et al. (1997) Pore-size constraints on the activity and survival of subsurface bacteria in a late cretaceous shale-sandstone sequence, northwestern New Mexico. Geomicrobiol J 14: 183202.
  • Fry A (2005) Water Facts and Trends. World Business Council for Sustainable Development, Geneva.
  • Fry JC, Horsfield B, Sykes R, Cragg BA, Heywood C, Kim GT, Mangelsdorf K, Mildenhall DC, Rinna J & Vieth A (2009) Prokaryotic populations and activities in an interbedded coal deposit, including a previously deeply buried section (1.6–2.3 km) above∼ 150 Ma basement rock. Geomicrobiol J 26: 163178.
  • Fukuda A, Hagiwara H, Ishimura T, Kouduka M, Ioka S, Amano Y, Tsunogai U, Suzuki Y & Mizuno T (2010) Geomicrobiological properties of ultra-deep granitic groundwater from the Mizunami Underground Research Laboratory (MIU), central Japan. Microb Ecol 60: 214225.
  • Griebler C, Mindl B, Slezak D & Geiger-Kaiser M (2002) Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat Microb Ecol 28: 117129.
  • Hallbeck L & Pedersen K (2008) Characterization of microbial processes in deep aquifers of the Fennoscandian Shield. Appl Geochem 23: 17961819.
  • Haveman SA, Pedersen K & Ruotsalainen P (1999) Distribution and metabolic diversity of microorganisms in deep igneous rock aquifers of Finland. Geomicrobiol J 16: 277294.
  • Hazen TC, Jiménez L, de Victoria GL & Fliermans CB (1991) Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microb Ecol 22: 293304.
  • Itävaara M, Nyyssönen M, Kapanen A, Nousiainen A, Ahonen L & Kukkonen I (2011) Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield. FEMS Microbiol Ecol 77: 295309.
  • Jain D, Providenti M, Tanner C, Cord I & Stroes-Gascoyne S (1997) Characterization of microbial communities in deep groundwater from granitic rock. Can J Microbiol 43: 272283.
  • Kallmeyer J, Pockalny R, Adhikari RR, Smith DC & D'Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. P Natl Acad Sci USA 109: 1621316216.
  • Kato K, Nagaosa K, Kimura H, Katsuyama C, Hama K, Kunimaru T, Tsunogai U & Aoki K (2009) Unique distribution of deep groundwater bacteria constrained by geological setting. Environ Microbiol Rep 1: 569574.
  • Kieft TL, Wilch E, O'Connor K, Ringelberg DB & White DC (1997) Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl Environ Microbiol 63: 15311542.
  • Kieft TL, McCuddy SM, Onstott T, Davidson M, Lin L, Mislowack B, Pratt L, Boice E, Lollar BS & Lippmann-Pipke J (2005) Geochemically generated, energy-rich substrates and indigenous microorganisms in deep, ancient groundwater. Geomicrobiol J 22: 325335.
  • Kimura H, Sugihara M, Yamamoto H, Patel BK, Kato K & Hanada S (2005) Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles 9: 407414.
  • Kölbel-Boelke J, Anders E & Nehrkorn A (1988) Microbial communities in the saturated groundwater environment II: diversity of bacterial communities in a Pleistocene sand aquifer and their in vitro activities. Microb Ecol 16: 3148.
  • Kominz MA & Pekar SF (2001) Oligocene eustasy from two-dimensional sequence stratigraphic backstripping. Geol Soc Am Bull 113: 291304.
  • Lehman RM, Colwell FS & Bala GA (2001) Attached and unattached microbial communities in a simulated basalt aquifer under fracture-and porous-flow conditions. Appl Environ Microbiol 67: 27992809.
  • Lin L, Hall J, Lippmann-Pipke J, Ward JA, Sherwood Lollar B, DeFlaun M, Rothmel R, Moser D, Gihring TM & Mislowack B (2005) Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. Geochem Geophys Geosyst 6: Q07003.
  • Lin L, Wang P, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Lollar BS, Brodie EL, Hazen TC & Andersen GL (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314: 479482.
  • Marshall KC (1988) Adhesion and growth of bacteria at surfaces in oligotrophic habitats. Can J Microbiol 34: 503506.
  • Maxwell JC (1964) Influence of depth, temperature, and geologic age on porosity of quartzose sandstone. AAPG Bull 48: 697709.
  • Medina CR, Rupp JA & Barnes DA (2011) Effects of reduction in porosity and permeability with depth on storage capacity and injectivity in deep saline aquifers: a case study from the Mount Simon Sandstone aquifer. Int J Greenhouse Gas Control 5: 146156.
  • Morozova D, Wandrey M, Alawi M, Zimmer M, Vieth A, Zettlitzer M & Würdemann H (2010) Monitoring of the microbial community composition in saline aquifers during CO2 storage by fluorescence in situ hybridisation. Int J Greenhouse Gas Control 4: 981989.
  • Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, Lollar BS, Pratt LM, Boice E & Southam G (2005) Desulfotomaculum and Methanobacterium spp. dominate a 4-to 5-kilometer-deep fault. Appl Environ Microbiol 71: 87738783.
  • Murakami Y, Fujita Y, Naganuma T & Iwatsuki T (2002) Abundance and viability of the groundwater microbial communities from a borehole in the Tono uranium deposit area, central Japan. Microbes Environ 17: 6374.
  • O'Connell SP, Lehman RM, Snoeyenbos-West O, Winston VD, Cummings DE, Watwood ME & Colwell FS (2003) Detection of Euryarchaeota and Crenarchaeota in an oxic basalt aquifer. FEMS Microbiol Ecol 44: 165173.
  • Olson G, Dockins W, McFeters G & Iverson W (1981) Sulfate-reducing and methanogenic bacteria from deep aquifers in Montana. Geomicrobiol J 2: 327340.
  • Omar G, Onstott T & Hoek J (2003) The origin of deep subsurface microbial communities in the Witwatersrand Basin, South Africa as deduced from apatite fission track analyses. Geofluids 3: 6980.
  • Pedersen K & Ekendahl S (1990) Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb Ecol 20: 3752.
  • Pedersen K & Ekendahl S (1992a) Assimilation of CO2 and introduced organic compounds by bacterial communities in groundwater from southeastern Sweden deep crystalline bedrock. Microb Ecol 23: 114.
  • Pedersen K & Ekendahl S (1992b) Incorporation of CO2 and introduced organic compounds by bacterial populations in groundwater from the deep crystalline bedrock of the Stripa mine. J Gen Microbiol 138: 369376.
  • Pedersen K, Arlinger J, Hallbeck L & Pettersson C (1996) Diversity and distribution of subterranean bacteria in groundwater at Oklo in Gabon, Africa, as determined by 16S rRNA gene sequencing. Mol Ecol 5: 427436.
  • Person M, Banerjee A, Rupp J, Medina C, Lichtner P, Gable C, Pawar R, Celia M, McIntosh J & Bense V (2010) Assessment of basin-scale hydrologic impacts of CO2 sequestration, Illinois basin. Int J Greenhouse Gas Control 4: 840854.
  • Romanova N & Sazhin A (2010) Relationships between the cell volume and the carbon content of bacteria. Oceanology 50: 522530.
  • Shimizu S, Akiyama M, Ishijima Y, Hama K, Kunimaru T & Naganuma T (2006) Molecular characterization of microbial communities in fault-bordered aquifers in the Miocene formation of northernmost Japan. Geobiology 4: 203213.
  • Sinclair JL & Ghiorse WC (1989) Distribution of aerobic bacteria, protozoa, algae and fungi in deep subsurface sediments. Geomicrobiol J 7: 1531.
  • Sokolov A (1977) World water resources: perspectives and problems. World Dev 5: 519523.
  • Stevens T, McKinley J & Fredrickson J (1993) Bacteria associated with deep, alkaline, anaerobic groundwaters in southeast Washington. Microb Ecol 25: 3550.
  • Takai K, Mormile MR, McKinley JP, Brockman FJ, Holben WE, Kovacik WP & Fredrickson JK (2003) Shifts in archaeal communities associated with lithological and geochemical variations in subsurface Cretaceous rock. Environ Microbiol 5: 309320.
  • Troussellier M, Bouvy M, Courties C & Dupuy C (1997) Variation of carbon content among bacterial species under starvation condition. Aquat Microb Ecol 13: 113119.
  • Whitman WB, Coleman DC & Wiebe WJ (1998) Prokaryotes: the unseen majority. P Natl Acad Sci USA 95: 65786583.