SEARCH

SEARCH BY CITATION

References

  • Adler M, Eckert W & Sivan O (2011) Quantifying rates of methanogenesis and methanotrophy in Lake Kinneret sediments (Israel) using pore-water profiles. Limnol Oceanogr 56: 15251535.
  • Agogué H, Brink M, Dinasquet J & Herndl GJ (2008) Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 456: 788791.
  • Aharon P & Fu B (2000) Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochim Cosmochim Acta 64: 233246.
  • Alperin MJ & Hoehler TM (2009a) Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. Am J Sci 309: 869957.
  • Alperin MJ & Hoehler TM (2009b) Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 2. Isotopic constraints. Am J Sci 309: 958984.
  • Alperin M & Hoehler T (2010) The ongoing mystery of sea-floor methane. Science 329: 288289.
  • Alperin MJ, Reeburgh WS & Whiticar MJ (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochem Cycles 2: 279288.
  • Antler G, Turchyn AV, Rennie V, Herut B & Sivan O (2013) Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment. Geochim Cosmochim Acta 118: 98117.
  • Antony CP, Murrell JC & Shouche YS (2011) Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol Ecol 81: 4351.
  • Bodelier PLE (2011) Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Curr Opin Environ Sustain 3: 379388.
  • Boetius A, Ravenschlag K, Schubert CJ et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623626.
  • Bowles MW, Samarkin VA, Bowles KM & Joye SB (2011) Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation. Geochim Cosmochim Acta 75: 500519.
  • Brüchert V, Knoblauch C & Jørgensen B (2001) Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments. Geochim Cosmochim Acta 65: 763776.
  • Brunner B & Bernasconi SM (2005) A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochim Cosmochim Acta 69: 47594771.
  • Brunner B, Einsiedl F, Arnold G, Müller I, Templer S & Bernasconi SM (2012) The reversibility of dissimilatory sulphate reduction and the cell-internal multi-step reduction of sulphite to sulphide: insights from the oxygen isotope composition of sulfate. Isotopes Environ Health Stud 48: 3354.
  • Burdige DJ (2006) Geochemistry of Marine Sediments. Princeton University Press, Princeton, NJ.
  • Canfield DE, Olesen CA & Cox RP (2006) Temperature and its control of isotope fractionation by a sulfate-reducing bacterium. Geochim Cosmochim Acta 70: 548561.
  • Canfield DE, Farquhar J & Zerkle AL (2010) High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology 38: 415418.
  • Capone KA, Dowd SE, Stamatas GN & Nikolovski J (2011) Diversity of the human skin microbiome early in life. J Invest Dermatol 131: 20262032.
  • Cathles LM, Su Z & Chen D (2010) The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Mar Pet Geol 27: 8291.
  • Chang SW, Hyman MR & Williamson KJ (2002) Cooxidation of naphthalene and other polycyclic aromatic hydrocarbons by the nitrifying bacterium, Nitrosomonas europaea. Biodegradation 13: 373381.
  • Coleman D & Ballard R (2001) A highly concentrated region of cold hydrocarbon seeps in the southeastern Mediterranean Sea. Geo-Mar Lett 21: 162167.
  • Coleman DF, Austin JA Jr, Ben-Avraham Z, Makovsky Y & Tchernov D (2012) Seafloor pockmarks, deepwater corals, and cold seeps along the continental margin of Israel. Oceanography 25 (suppl 1): 4041.
  • Conrad R (2005) Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem 36: 739752.
  • Dang H, Luan X-W, Chen R, Zhang X, Guo L & Klotz MG (2010) Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea. FEMS Microbiol Ecol 72: 370385.
  • DeSantis TZ, Hugenholtz P, Larsen N et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 50695072.
  • Dhillon A, Lever M, Lloyd K, Albert DB, Sogin ML & Teske A (2005) Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Appl Environ Microbiol 71: 45924601.
  • Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG & Edrington TS (2008a) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8: 125.
  • Dowd SE, Sun Y, Wolcott RD, Domingo A & Carroll JA (2008b) Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog Dis 5: 459472.
  • Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E & Rhoads D (2008c) Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 3: e3326.
  • Dridi B, Fardeau M-L, Ollivier B, Raoult D & Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62: 19021907.
  • Eren AM, Zozaya M, Taylor CM, Dowd SE, Martin DH & Ferris MJ (2011) Exploring the diversity of Gardnerella vaginalis in the genitourinary tract microbiota of monogamous couples through subtle nucleotide variation. PLoS ONE 6: e26732.
  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJM, Jetten MSM & Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10: 31643173.
  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791.
  • Francis CA, Beman JM & Kuypers MMM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1: 1927.
  • Frank KL, Rogers DR, Olins HC, Vidoudez C & Girguis PR (2013) Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents. ISME J 7: 13911401.
  • Garcia JL, Patel BK & Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6: 205226.
  • Goffredi SK & Orphan VJ (2010) Bacterial community shifts in taxa and diversity in response to localized organic loading in the deep sea. Environ Microbiol 12: 344363.
  • Gorlenko VM, Briantseva IA, Panteleeva EE, Turova TP, Kolganova TV, Makhneva ZK & Moskalenko AA (2004) Ectothiorhodosinus mongolicum gen. nov., sp. nov.,–a new purple sulfur bacterium from soda lake in Mongolia. Mikrobiologiia 73: 8088.
  • Grünke S, Felden J, Lichtschlag A, Girnth A-C, De Beer D, Wenzhöfer F & Boetius A (2011) Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology 9: 330348.
  • Heijs SK, Aloisi G, Bouloubassi I, Pancost RD, Pierre C, Sinninghe Damsté JS, Gottschal JC, van Elsas JD & Forney LJ (2006) Microbial community structure in three deep-sea carbonate crusts. Microb Ecol 52: 451462.
  • Heijs SK, Haese RR, van der Wielen PWJJ, Forney LJ & van Elsas JD (2007) Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep. Microb Ecol 53: 384398.
  • Herndl G, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A & Pernthaler J (2005) Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71: 23032309.
  • Hinrichs K-U & Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. Ocean Margin Systems (Wefer G, Billett D, Hebbeln DJ, Jørgensen BB, Schlüter M & Weering, van TCE, eds), pp. 457477. Springer-Verlag, Berlin.
  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG & DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398: 802805.
  • Hippe H, Caspari D, Fiebig K & Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. P Natl Acad Sci USA 76: 494498.
  • Hoehler T, Alperin M & Albert D (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8: 451463.
  • Holler T, Wegener G, Knittel K, Boetius A, Brunner B, Kuypers MMM & Widdel F (2009) Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro. Environ Microbiol Rep 1: 370376.
  • House CH, Orphan VJ, Turk KA, Thomas B, Pernthaler A, Vrentas JM & Joye SB (2009) Extensive carbon isotopic heterogeneity among methane seep microbiota. Environ Microbiol 11: 22072215.
  • Hovland M, Gardner JV & Judd AG (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2: 127136.
  • Hovland M, Heggland R, De Vries MH & Tjelta TI (2010) Unit-pockmarks and their potential significance for predicting fluid flow. Mar Pet Geol 27: 11901199.
  • Hovland M, Jensen S & Fichler C (2012) Methane and minor oil macro-seep systems — their complexity and environmental significance. Mar Geol 332–334: 163173.
  • Inagaki F (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing -proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53: 18011805.
  • Inagaki F, Takai K, Nealson KH & Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54: 14771482.
  • Jagersma CG, Meulepas RJW, Timmers PHA, Szperl A, Lens PNL & Stams AJM (2012) Enrichment of ANME-1 from Eckernförde Bay sediment on thiosulfate, methane and short-chain fatty acids. J Biotechnol 157: 482489.
  • Jeroschewski P, Steuckart C & Kühl M (1996) An amperometric microsensor for the determination of H2S in Aquatic Environments. Anal Chem 68: 43514357.
  • Jørgensen BB & Boetius A (2007) Feast and famine — microbial life in the deep-sea bed. Nat Rev Microbiol 5: 770781.
  • Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ & Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205: 219238.
  • Judd A & Hovland M (2007) Seabed Fluid Flow – Impact on Geology, Biology and the Marine Environment. Cambridge University Press, Cambridge, UK.
  • Kendall MM & Boone DR (2006) Cultivation of methanogens from shallow marine sediments at Hydrate Ridge, Oregon. Archaea 2: 3138.
  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111120.
  • Kleindienst S, Ramette A, Amann R & Knittel K (2012) Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 14: 26892710.
  • Knittel K & Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63: 311334.
  • Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P & Amann R (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol J 20: 269294.
  • Knittel K, Losekann T, Boetius A, Kort R & Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71: 467.
  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB & Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543546.
  • La Cono V, Smedile F, Bortoluzzi G et al. (2011) Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: prokaryotes and environmental settings. Environ Microbiol 13: 22502268.
  • Lam P, Jensen MM, Lavik G, McGinnis DF, Müller B, Schubert CJ, Amann R, Thamdrup B & Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. P Natl Acad Sci USA 104: 71047109.
  • Lavik G, Stührmann T, Brüchert V et al. (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457: 581584.
  • Lazar CS, L'haridon S, Pignet P & Toffin L (2011a) Archaeal populations in hypersaline sediments underlying orange microbial mats in the Napoli mud volcano. Appl Environ Microbiol 77: 31203131.
  • Lazar CS, Parkes RJ, Cragg BA, L'Haridon S & Toffin L (2011b) Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea. Environ Microbiol 13: 20782091.
  • Lloyd KG, Albert DB, Biddle JF, Chanton JP, Pizarro O & Teske A (2010) Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep. PLoS ONE 5: e8738.
  • Lloyd KG, Alperin MJ & Teske A (2011) Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea. Environ Microbiol 13: 25482564.
  • Lloyd KG, Schreiber L, Petersen DG et al. (2013) Predominant archaea in marine sediments degrade detrital proteins. Nature 496: 215218.
  • Loncke L (2004) Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (Eastern Mediterranean): geophysical evidences. Mar Pet Geol 21: 669689.
  • Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A & Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73: 33483362.
  • Martens C, Albert D & Alperin M (1999) Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernforde Bay, German Baltic Sea. Am J Sci 299: 589610.
  • Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S & Moran NA (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20: 619628.
  • Mascle J, Sardou O, Loncke L, Migeon S, Caméra L & Gaullier V (2006) Morphostructure of the Egyptian continental margin: insights from swath bathymetry surveys. Mar Geophys Res 27: 4959.
  • Milkov A (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167: 2942.
  • Millero FJ, Plese T & Fernandez M (1988) The dissociation of hydrogen sulfide in seawater. Limnol Oceanogr 33: 269274.
  • Milucka J, Ferdelman TG, Polerecky L et al. (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491: 541546.
  • Miroshnichenko ML (2003) Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53: 323329.
  • Mochimaru H, Tamaki H, Hanada S, Imachi H, Nakamura K, Sakata S & Kamagata Y (2009) Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol 59: 714718.
  • Moran NA, Hansen AK, Powell JE & Sabree ZL (2012) Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE 7: e36393.
  • Muller F, Brissac T, Le Bris N, Felbeck H & Gros O (2010) First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat. Environ Microbiol 12: 23712383.
  • Mussmann M, Brito I, Pitcher A et al. (2011) Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. P Natl Acad Sci USA 108: 1677116776.
  • Niemann H, Duarte J & Hensen C (2006a) Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochim Cosmochim Acta 70: 53365355.
  • Niemann H, Lösekann T, de Beer D et al. (2006b) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443: 854858.
  • Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Røy H, Stadnitskaia A, Foucher J-P & Boetius A (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 74: 31983215.
  • Omoregie EO, Niemann H, Mastalerz V, De Lange GJ, Stadnitskaia A, Mascle J, Foucher JP & Boetius A (2009) Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea. Mar Geol 261: 114127.
  • Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T & Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep Sea Res Part II 57: 20082021.
  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD & DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293: 484487.
  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD & DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. P Natl Acad Sci USA 99: 7663.
  • Pachiadaki MG, Kallionaki A, Dählmann A, De Lange GJ & Kormas KA (2011) Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. Microb Ecol 62: 655668.
  • Penger J, Conrad R & Blaser M (2012) Stable carbon isotope fractionation by methylotrophic methanogenic archaea. Appl Environ Microbiol 78: 75967602.
  • Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T & Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. P Natl Acad Sci USA 105: 7052.
  • Pester M, Schleper C & Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14: 300306.
  • Pilloni G, Granitsiotis MS, Engel M & Lueders T (2012) Testing the limits of 454 pyrotag sequencing: reproducibility, quantitative assessment and comparison to T-RFLP fingerprinting of aquifer microbes. PLoS ONE 7: e40467.
  • Pohlman JW, Riedel M, Bauer JE, Canuel EA, Paull CK, Lapham L, Grabowski KS, Coffin RB & Spence GD (2013) Anaerobic methane oxidation in low-organic content methane seep sediments. Geochim Cosmochim Acta 108: 184201.
  • Polymenakou PN, Lampadariou N, Mandalakis M & Tselepides A (2009) Phylogenetic diversity of sediment bacteria from the southern Cretan margin, Eastern Mediterranean Sea. Syst Appl Microbiol 32: 1726.
  • Quistad SD & Valentine DL (2011) Anaerobic propane oxidation in marine hydrocarbon seep sediments. Geochim Cosmochim Acta 75: 21592169.
  • Reeburgh WS (1982) A major sink and flux control for methane in marine sediments, anaerobic consumption. The Dynamic Environment of the Ocean Floor (Fanning KA & Manheim F, eds), pp. 203217. Lexington Books, Lahnham, MD, USA.
  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107: 486513.
  • Schreiber L, Holler T, Knittel K, Meyerdierks A & Amann R (2010) Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol 12: 23272340.
  • Seifert R, Nauhaus K, Blumenberg M, Krüger M & Michaelis W (2006) Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro. Org Geochem 37: 14111419.
  • Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW & Podar M (2013) Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities. Environ Microbiol 15: 18821899.
  • Siegert M, Cichocka D, Herrmann S, Gründger F, Feisthauer S, Richnow H-H, Springael D & Krüger M (2011) Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions. FEMS Microbiol Lett 315: 616.
  • Sievert SM, Wieringa EBA, Wirsen CO & Taylor CD (2007) Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ Microbiol 9: 271276.
  • Sim MS, Bosak T & Ono S (2011) Large sulfur isotope fractionation does not require disproportionation. Science 333: 7477.
  • Singh N, Kendall MM, Liu Y & Boone DR (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55: 25312538.
  • Sommer S, Pfannkuche O, Linke P et al. (2006) Efficiency of the benthic filter: biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge. Global Biogeochem Cycles 20: GB2019.
  • Sorokin D, Tourova T, Braker G & Muyzer G (2007) Thiohalomonas denitrificans gen. nov., sp. nov. and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying Gammaproteobacteria. Int J Syst Evol Microbiol 57: 15821589.
  • Sowers K & Ferry J (1983) Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl Environ Microbiol 45: 684.
  • Swanson KS, Dowd SE, Suchodolski JS et al. (2011) Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J 5: 639649.
  • Takai K & Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66: 5066.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 27312739.
  • Thauer RK & Shima S (2006) Methane and microbes. Nature 440: 34.
  • Treude T, Boetius A, Knittel K, Wallmann K & Barker Joergensen B (2003) Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar Ecol Prog Ser 264: 114.
  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk H-P & Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7: 19851995.
  • Valentine DL, Chidthaisong A, Rice A, Reeburgh WS & Tyler SC (2004) Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens. Geochim Cosmochim Acta 68: 15711590.
  • Wang Y & Qian P (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4: e7401.
  • Wang C-S, Liao L, Xu H-X, Xu X-W, Wu M & Zhu L-Z (2010) Bacterial diversity in the sediment from polymetallic nodule fields of the Clarion-Clipperton Fracture Zone. J Microbiol 48: 573585.
  • Widdel F (1987) New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch Microbiol 148: 286291.
  • Woebken D, Fuchs BM, Kuypers MMM & Amann R (2007) Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Appl Environ Microbiol 73: 46484657.
  • Wöhlbrand L, Jacob JH, Kube M et al. (2013) Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium. Environ Microbiol 15: 13341355.
  • Wortmann U, Bernasconi S & Böttcher M (2001) Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29: 647650.
  • Xu M, Schnorr J, Keibler B & Simon HM (2012) Comparative analysis of 16S rRNA and amoA genes from archaea selected with organic and inorganic amendments in enrichment culture. Appl Environ Microbiol 78: 21372146.
  • Zened A, Combes S, Cauquil L, Mariette J, Klopp C, Bouchez O, Troegeler-Meynadier A & Enjalbert F (2013) Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol Ecol 83: 504514.