SEARCH

SEARCH BY CITATION

References

  • Baca BE & Elmerich C (2007) Microbial production of plants hormones by microorganisms. Associative Nitrogen-Fixation Bacteria and Cyanobacteria. IV. Series: Nitrogen Fixation: Origins, Applications, and Research Progress (Elmerich C & Newton W, eds), pp. 113137. Springer Life Science, The Netherlands.
  • Baldani VLD, Alvarez UAB, Baldani JI & Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90: 3546.
  • Barraud N, Hassett DJ, Hwang SH, Rice ASA, Kjelleberg S & Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188: 73447353.
  • Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA & Kjelleberg S (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191: 73337342.
  • Bashan Y & de-Bashan L (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. Advances in Agronomy, Vol. 108 (Sparks D, ed), pp. 77136. Academic Press, Burlington.
  • Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N & Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13: 11701176.
  • Bloom AJ, Meyerhoff PA, Taylor AR & Thomas LR (2003) Root development and absorption of ammonium and nitrate from the rhizosphere. J Plant Growth Regul 21: 416431.
  • Bothe H, Korsgen H, Lehmacher T & Hundeshagen B (1992) Differential effects of Azospirillum, auxin and combined nitrogen on the growth of the roots of wheat. Simbiosis 13: 167179.
  • Burdman S, Okon Y & Jurkevitch E (2000) Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26: 91110.
  • Carreño-López R, Campos-Reales N, Elmerich C & Baca BE (2000) Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense Sp7. Mol Gen Genet 264: 521530.
  • Cohen MF, Lamattina L & Yamasaki H (2010) Nitric oxide signaling by plant associated bacteria. Nitric Oxide in Plant Physiology (Hayat S, Mori M, Pichtel J & Ahmad A, eds), pp. 161172. Wiley-Vch, Germany.
  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi C & Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense –induced lateral root formation in tomato. Planta 221: 297303.
  • Danhorn T & Fuqua C (2007) Biofilm formation by Plant-associated bacteria. Annu Rev Microbiol 61: 401422.
  • Didonet AD & Magalhães AC (1993) The role of external messengers in root growth promoting Azospirillum in wheat. Braz J Plant Physiol 5: 73.
  • Didonet AD & Magalhães AC (1997) Growth and nitrite production by Azospirillum strains subjected to different levels of dissolved oxygen in the medium. Soil Biol Biochem 29: 17431746.
  • Döbereiner J & Day L (1976) Associative symbiosis in tropical grasses: characterization of microorganism and dinitrogen fixing sites. Proc 1st Int Symp N2 Fixation (Newton WE & Nyman CJ, eds), pp. 518538. Washington State University Press, Pullman, WA.
  • Falsetta ML, Steichen CT, McEwan AG, Cho C, Ketterer M, Shao J, Hunt J, Jennings MP & Apicella MA (2011) The composition and metabolic phenotype of Neisseria gonorrhoeae biofilms. Front Microbiol 2: 74.
  • Fibach-Paldi S, Burdman S & Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326: 99108.
  • Hart TW (1985) Some observations concerning the S-nitroso and S-phenylsulphonyl derivates of L-cysteine and glutathione. Tetrahedron Lett 26: 20132016.
  • Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7: 263273.
  • Herigstad B, Hamilton M & Heersink J (2001) How to optimize the drop plate method for enumerating bacteria. J Microbiol Methods 44: 121129.
  • Karatan E & Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73: 310347.
  • Kloepper JW, Scher FM, Laliberte B & Tipping B (1986) Emergence-plant growth promoting rhizobacteria: description and implication for agriculture. Iron, Siderophores, and Plant Diseases (Swinburne TR, ed), pp. 155164. Plenum Press, NY.
  • Lamattina L, García-Mata C, Graziano M & Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54: 109136.
  • Molina-Favero C, Creus CM, Simontacchi Puntarulo S & Lamattina L (2008) Aerobic nitric oxide production by Azospirillum Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Interact 21: 10011009.
  • Mur LAJ, Mandon J, Cristescu SM, Harren FJM & Prats E (2011) Methods of nitric oxide detection in plants: a commentary. Plant Sci 181: 509519.
  • Okon Y & Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years of worldwide field inoculation. Soil Biol Biochem 26: 15911601.
  • O'Toole GA & Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways a genetic approach. Mol Microbiol 28: 449461.
  • Plate L & Marletta MA (2012) Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network. Mol Cell 46: 112.
  • Pothier JF, Prigent-Combaret C, Haurat J, Moënne-Loccoz Y & Wisniewski-Dyé F (2008) Duplication of plasmid-borne nitrite reductase gene nirK in the wheat-associated plant growth promoting rhizobacterium Azospirillum brasilense Sp245. Mol Plant Microbe Interact 21: 831842.
  • Ramey BE, Koutsoudis M, von Bodman SB & Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7: 602609.
  • Richardson DJ & Ferguson SJ (1992) The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grown Thiosphaera pantotropha. Arch Microbiol 157: 535537.
  • Richardson AR, Dunman PM & Fang FC (2006) The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 61: 927939.
  • Rodríguez-Cáceres EA (1982) Improved medium for isolation of Azospirillum ssp. Appl Environ Microbiol 44: 990991.
  • Schlag S, Ners C, Birkenstock TA, Altenberend F & Gotz F (2007) Inhibition of staphylococcal biofilm formation by nitrite. J Bacteriol 189: 79117919.
  • Schmidt I, Steenbakkers PJM, op den Camp HJM, Schmidt K & Jetten MSM (2004) Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J Bacteriol 186: 27812788.
  • Sears HJ, Ferguson SJ, Richardson DJ & Spiro S (1993) The identification of a periplasmic nitrate reductase in Paracoccus denitrificans. FEMS Microbiol Lett 113: 107112.
  • Sears HJ, Spiro S & Richardson DJ (1997) Effect of carbon substrate and aeration on nitrate reduction and expression of the periplasmic and membrane-bound nitrate reductases in carbon limited continuous cultures of Paracoccus denitrificans Pd1222. Microbiology 143: 37673774.
  • Siuti P, Green C, Edwards AN, Doktycz MJ & Alexandre G (2011) The chemotaxis-like Che1 pathway has an indirect role in adhesive cell properties of Azospirillum brasilense. FEMS Microbiol Lett 323: 105112.
  • Steenhoudt O, Keijers V, Okon Y & Vanderleyden J (2001a) Identification and characterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245. Arch Microbiol 175: 344352.
  • Steenhoudt O, Ping Z, Vande Broek A & Vanderleyden J (2001b) A spontaneous chlorate-resistant mutant of Azospirillum brasilense Sp245 displays defects in nitrate reduction and plant root colonization. Biol Fertil Soils 33: 317322.
  • Webb JS (2006) Differentiation and dispersal in biofilms. Bacterial Biofilm Formation and Adaptation (Kjelleberg S & Givskov M, eds), pp. 165174. Horizon Scientific Press, UK.
  • Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G et al. (2011) Azospirillum genome reveals transition of bacteria from aquatic to terrestrial environments. PLoS Genet e1002430.
  • Ye RW, Averill BA & Tiedje JM (1994) Denitrification: production and consumption of nitric oxide. Appl Environ Microbiol 60: 10531058.
  • Zimmer W & Bothe H (1988) The phytohormone interactions between Azospirillum and wheat. Plant Soil 110: 239247.
  • Zimmer W, Penteado SM & Bothe H (1984) Denitrification by Azospirillum brasilense Sp7 I. Growth with nitrate as respiratory electron acceptor. Arch Microbiol 138: 206211.
  • Zimmer W, Roeben K & Bothe H (1988) An alternative explanation for plant growth promotion by bacteria of the genus Azospirillum. Planta 176: 333334.
  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61: 533616.