SEARCH

SEARCH BY CITATION

References

  • Asgarali A, Stubbs KA, Oliver A, Vocadlo DJ & Mark BL (2009) Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53: 22742282.
  • Bacik JP, Whitworth GE, Stubbs KA, Vocadlo DJ & Mark BL (2012) Active site plasticity within the glycoside hydrolase NagZ underlies a dynamic mechanism of substrate distortion. Chem Biol 9: 14711482.
  • Carrasco-López C, Rojas-Altuve A, Zhang W et al. (2011) Crystal structures of bacterial peptidoglycan amidase AmpD and an unprecedented activation mechanism. J Biol Chem 286: 3171431722.
  • Cheng Q & Park JT (2002) Substrate specificity of the AmpG permease required for recycling of cell wall anhydro-muropeptides. J Bacteriol 184: 64346436.
  • Cheng Q, Li H, Merdek K & Park JT (2000) Molecular characterization of the beta-N-acetylglucosaminidase of Escherichia coli and its role in cell wall recycling. J Bacteriol 182: 48364840.
  • Clinical and Laboratory Standards Institute (2006) Performance Standards for Antimicrobial Susceptibility Testing of Bacteria; 14th Informational Supplement. Clinical and Laboratory Standards Institute, Wayne, PA.
  • Erbs G, Silipo A, Aslam S et al. (2008) Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem Biol 15: 438448.
  • Goodell EW (1985) Recycling of murein by Escherichia coli. J Bacteriol 63: 305310.
  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557580.
  • Hanson ND & Sanders CC (1999) Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr Pharm Des 5: 881894.
  • Höltje JV, Mirelman D, Sharon N & Schwarz U (1975) Novel type of murein transglycosylase in Escherichia coli. J Bacteriol 124: 10671076.
  • Hu RM, Yang TC, Yang SH & Tseng YH (2005) Deduction of upstream sequences of Xanthomonas campestris flagellar genes responding to transcription activation by FleQ. Biochem Biophys Res Commun 335: 10351043.
  • Hu RM, Huang KJ, Wu LT, Hsiao YJ & Yang TC (2008) Induction of L1 and L2 beta-lactamases of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 52: 11981200.
  • Huang YW, Lin CW, Hu RM, Lin YT, Chung TC & Yang TC (2010) AmpN-AmpG operon is essential for expression of L1 and L2 beta-lactamases in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 54: 25832589.
  • Jacobs C, Huang LJ, Bartowsky E, Normark S & Park JT (1994) Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J 13: 46844694.
  • Jacobs C, Joris B, Jamin M, Klarsov K, Van Beeumen J, Mengin-Lecreulx D, van Heijenoort J, Park JT, Normark S & Frère JM (1995) AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-l-alanine amidase. Mol Microbiol 15: 553559.
  • Kong KF, Aguila A, Schneper L & Mathee K (2010) Pseudomonas aeruginosa beta-lactamase induction requires two permeases, AmpG and AmpP. BMC Microbiol 10: 328.
  • Korfmann G & Sanders CC (1989) ampG is essential for high-level expression of AmpC beta-lactamase in Enterobacter cloacae. Antimicrob Agents Chemother 33: 19461951.
  • Langaee TY, Dargis M & Huletsky A (1998) An ampD gene in Pseudomonas aeruginosa encodes a negative regulator of AmpC beta-lactamase expression. Antimicrob Agents Chemother 42: 32963300.
  • Lee MC, Weng SF & Tseng YH (2003) Flagellin gene fliC of Xanthomonas campestris is upregulated by transcription factor Clp. Biochem Biophys Res Commun 307: 647652.
  • Lee M, Zhang W, Hesek D, Noll BC, Boggess B & Mobashery S (2009) Bacterial AmpD at the crossroads of peptidoglycan recycling and manifestation of antibiotic resistance. J Am Chem Soc 131: 87428743.
  • Lindberg F & Normark S (1987) Common mechanism of ampC beta-lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99 beta-lactamase gene. J Bacteriol 169: 758763.
  • Lindquist S, Weston-Hafer K, Schmidt H, Pul C, Korfmann G, Erickson J, Sanders C, Martin HH & Normark S (1993) AmpG, a signal transducer in chromosomal beta-lactamase induction. Mol Microbiol 9: 703715.
  • Lister PD, Wolter DJ & Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22: 582610.
  • Moya B, Juan C, Albertí S, Pérez JL & Oliver A (2008) Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52: 36943700.
  • Normark S (1995) beta-Lactamase induction in gram-negative bacteria is intimately linked to peptidoglycan recycling. Microb Drug Resist 1: 111114.
  • Park JT & Uehara T (2008) How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 272: 211227.
  • Schleifer KH & Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407477.
  • Schmidtke AJ & Hanson ND (2008) Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 52: 39223927.
  • Schweizer HD (1993) Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15: 831834.
  • Selzer G, Som T, Itoh T & Tomizawa J (1983) The origin of replication of plasmid p15A and comparative studies on the nucleotide sequences around the origin of related plasmids. Cell 32: 119129.
  • Sonnhammer EL, von Heijne G & Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6: 175182.
  • Uehara T & Park JT (2002) Role of the murein precursor UDP-N-acetylmuramyl-l-Ala-gamma-d-Glu-meso-diaminopimelic acid-d-Ala-d-Ala in repression of beta-lactamase induction in cell division mutants. J Bacteriol 184: 42334239.
  • Vötsch W & Templin MF (2000) Characterization of a beta-N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and beta-lactamase induction. J Biol Chem 275: 3903239038.
  • Weng SF, Chen CY, Lee YS, Lin JW & Tseng YH (1999) Identification of a novel beta-lactamase produced by Xanthomonas campestris, a phytopathogenic bacterium. Antimicrob Agents Chemother 43: 17921797.
  • Yang BY, Tsai HF & Tseng YH (1988) Broad host range cosmid pLAFR1 and non-mucoid mutant XCP20 provide a suitable vector-host system for cloning genes in Xanthomonas campestris pv. campestris. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 21: 4049.
  • Yang TC, Leu YW, Chang-Chien HC & Hu RM (2009a) Flagellar biogenesis of Xanthomonas campestris requires the alternative sigma factors RpoN2 and FliA and is temporally regulated by FlhA, FlhB, and FlgM. J Bacteriol 191: 22662275.
  • Yang TC, Huang YW, Hu RM, Huang SC & Lin YT (2009b) AmpDI is involved in expression of the chromosomal L1 and L2 β-lactamases of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 53: 29022907.
  • Yang TC, Tsai MJ, Tsai JJ & Hu RM (2011) Induction of a secretable beta-lactamase requires a long lag time in Xanthomonas campestris pv. campestris str. 17. Res Microbiol 162: 9991005.
  • Zhang Y, Bao Q, Gagnon LA, Huletsky A, Oliver A, Jin S & Langaee T (2010) ampG gene of Pseudomonas aeruginosa and its role in β-lactamase expression. Antimicrob Agents Chemother 54: 47724779.