• acetate metabolism;
  • biofilm-associated infectious disease;
  • Escherichia coli ;
  • quorum sensing;
  • two-component signaling


Current antibiotics continue to lose effectiveness for infectious diseases, especially in cases where the bacteria from a biofilm. This review article summarizes control mechanisms for bacterial biofilm, with an emphasis on the modification of signal transduction pathways, such as quorum sensing and two-component signaling, by externally added metabolic intermediates. As a link between central metabolism and signal transduction, we discuss the activation of two-component response regulators by activated acetate intermediates in response to signals from the environment. These signals constitute ‘nutrients’ for the bacteria in most cases. Depending on the identity of the nutrient, biofilm amounts may be reduced. The nutrient may then be used for the development of both novel prevention and treatment options for biofilm-associated infectious diseases.