SEARCH

SEARCH BY CITATION

References

  • Ahn SK, Cuthbertson L & Nodwell JR (2012) Genome context as a predictive tool for identifying regulatory targets of the TetR family transcriptional regulators. PLoS ONE 7: 113.
  • Anand S, Singh V, Singh AK, Mittal M, Datt M, Subramani B & Kumaran S (2012) Equilibrium binding and kinetic characterization of putative tetracycline repressor family transcription regulator Fad35R from Mycobacterium tuberculosis. FEBS J 279: 32143228.
  • Bailey TL & Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 2836.
  • Bailey TL & Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14: 4854.
  • Balhana R, Stoker NG, Sikder MH, Chauviac FX & Kendall SL (2010) Rapid construction of mycobacterial mutagenesis vectors using ligation-independent cloning. J Microbiol Methods 83: 3441.
  • Baulard AR, Betts JC, Engohang-Ndong J, Quan S, McAdam RA, Brennan PJ, Locht C & Besra GS (2000) Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 275: 2832628331.
  • Carver TJ, Rutherford KM, Berriman M, Rajandream MA & Barrell J (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21: 34223423.
  • de la Paz Santangelo M, Klepp L, Nunez-Garcia J et al. (2009) Mce3R, a TetR-type transcriptional repressor, controls the expression of a regulon involved in lipid metabolism in Mycobacterium tuberculosis. Microbiology 155: 22452255.
  • Daniel J, Oh TJ, Lee CM & Kolattukudy PE (2007) AccD6, a member of the Fas II locus, is a functional carboxyltransferase subunit of the acyl-coenzyme A carboxylase in Mycobacterium tuberculosis. J Bacteriol 189: 911917.
  • Ehebaur M, Noens EE, Zimmerman M, Marrakchi H, Laneelle M-A, Anandhakrishnan M, Daffe M, Saur U & Wilmanns M (2013) Catabolism of Branched Chain Amino Acids in Mycobacteria: Identification of Novel Carboxylase Activities in the Acyl-coA Carboxylase Family. Paper presented at Tuberculosis: Understanding the Enemy, British Columbia, Canada.
  • Ferguson KA (1964) Starch-gel electrophoresis–application to the classification of pituitary proteins and polypeptides. Metabolism 13(suppl): 9851002.
  • Gande R, Gibson KJ, Brown AK, Krumbach K, Dover LG, Sahm H, Shioyama S, Oikawa T, Besra GS & Eggeling L (2004) Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 279: 4484744857.
  • Gande R, Dover LG, Krumbach K, Besra GS, Sahm H, Oikawa T & Eggeling L (2007) The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis. J Bacteriol 189: 52575264.
  • Gomez M & Smith I (2000) Determinants of mycobacterial gene expression. Molecular Genetics of Mycobacteria (Hatfull GF & Jacobs WR Jr, eds.), pp. 111129. ASM Press, Washington, DC.
  • Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ & Sassetti CM (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7: e1002251.
  • Hillen W & Berens C (1994) Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol 48: 345369.
  • Hu Y, van der Geize R, Besra GS, Gurcha SS, Liu A, Rohde M, Singh M & Coates A (2009) 3-Ketosteroid 9alpha-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 75: 107121.
  • Kendall SL, Withers M, Soffair CN et al. (2007) A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 65: 684699.
  • Kendall SL, Burgess P, Balhana R, Withers M, Ten Bokum A, Lott JS, Gao C, Uhia-Castro I & Stoker NG (2010) Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2. Microbiology 156: 13621371.
  • Krause M, Fang FC & Guiney DG (1992) Regulation of plasmid virulence gene-expression in salmonella-dublin involves an unusual operon structure. J Bacteriol 174: 44824489.
  • Nesbitt NM, Yang X, Fontan P, Kolesnikova I, Smith I, Sampson NS & Dubnau E (2009) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78: 275282.
  • Orchard K & May GE (1993) An EMSA-based method for determining the molecular weight of a protein–DNA complex. Nucleic Acids Res 21: 33353336.
  • Papavinasasundaram KG, Anderson C, Brooks PC, Thomas NA, Movahedzadeh F, Jenner PJ, Colston MJ & Davis EO (2001) Slow induction of RecA by DNA damage in Mycobacterium tuberculosis. Microbiology 147: 32713279.
  • Senaratne RH, Sidders B, Sequeira P et al. (2008) Mycobacterium tuberculosis strains disrupted in mce3 and mce4 operons are attenuated in mice. J Med Microbiol 57: 164170.
  • Stewart GR, Patel J, Robertson BD, Rae A & Young DB (2005) Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathog 1: 269278.
  • Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41: 207234.
  • Thompson JD, Higgins DG & Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 46734680.
  • Tian J, Bryk R, Shi S, Erdjument-Bromage H, Tempst P & Nathan C (2005) Mycobacterium tuberculosis appears to lack alpha-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol Microbiol 57: 859868.
  • Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, Ehrt S & Nathan C (2011) Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 9: 2131.
  • Yu Z, Reichheld SE, Savchenko A, Parkinson J & Davidson AR (2010) A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. J Mol Biol 400: 847864.