• Beadle BM & Shoichet BK (2002) Structural basis for imipenem inhibition of Class C β-lactamases. Antimicrob Agents Chemother 46: 39783980.
  • Beadle BM, Trehan I, Focia PJ & Shoichet B (2002) Structural milestones in the reaction pathway of an amide hydrolase: substrate, acyl, and product complexes of cephalothin with AmpC β-lactamase. Structure 10: 413424.
  • Bellais S, Aubert D, Naas T & Nordmann P (2000) Molecular and biochemical heterogeneity of class B carbapenem-hydrolyzing β-lactamases in Chryseobacterium meningosepticum. Antimicrob Agents Chemother 44: 18781886.
  • Clinical and Laboratory Standards Institute (2010) Performance Standards for Antimicrobial Susceptibility Testing: Fifteenth Informational Supplement M100-S 15. CLSI, Wayne, PA, USA.
  • Cornish-Bowden A (1995) Fundamentals of Enzyme Kinetics. Portland Press, Seattle, Wash, pp. 3037.
  • Crichlow GV, Nukaga M, Doppalapudi VR, Buynak JD & Knox JR (2001) Inhibition of class C β-lactamases: structure of a reaction intermediate with a cephem sulfone. Biochemistry 40: 62336239.
  • Galleni M, Lamotte-Brasseur J, Raquet X, Dubus A, Monnaie D, Knox JR & Frère JM (1995) The enigmatic catalytic mechanism of active-site serine β-lactamases. Biochem Pharmacol 49: 11711178.
  • Heinze-Krauss I, Angehrn P, Charnas R et al. (1998) Structure-based design of β-lactamase inhibitors. 1. Synthesis and evaluation of bridged monobactams. J Med Chem 41: 39613971.
  • Laemmli UK & Favre M (1973) Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol 80: 575599.
  • Le Turnier S, Nordmann P, Eb F & Mammeri H (2009) Potential evolution of hydrolysis spectrum for AmpC β-lactamase in Escherichia coli. J Antimicrob Chemother 63: 216218.
  • Lobkovsky E, Moews PC, Liu H, Zhao H, Frère JM & Knox JR (1993) Evolution of an enzyme activity: crystallographic structure at 2-Å resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci USA 90: 1125711261.
  • Mammeri H, Poirel L & Nordmann P (2007) Extension of the hydrolysis spectrum of AmpC β-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix. J Antimicrob Chemother 60: 490494.
  • Mammeri H, Nordmann P, Berkani A & Eb F (2008) Contribution of extended-spectrum AmpC (ESAC) β-lactamases to carbapenem resistance in Escherichia coli. FEMS Microbiol Lett 282: 238240.
  • Mammeri H, Guillon H, Eb F & Nordmann P (2010) Phenotypic and biochemical comparison of the carbapenem-hydrolyzing activities of five plasmid borne AmpC β-lactamases. Antimicrob Agents Chemother 64: 45564560.
  • Mazzella LJ & Pratt RF (1989) Effect of the 3′-leaving group on turnover of cephem antibiotics by a class C β-lactamase. Biochem J 259: 255260.
  • Nukaga M, Kumar S, Nukaga K, Pratt RF & Knox JR (2004) Hydrolysis of third-generation cephalosporins by class C β-lactamases. Structures of a transition state analog of cefotaxime in wild-type and extended spectrum enzymes. J Biol Chem 279: 93449352.
  • Oefner C, D'Arcy A, Daly JJ, Gubernator K, Charnas RL, Heinze I, Hubschwerlen C & Winkler FK (1990) Refined crystal structure of β-lactamase from Citrobacter freundii indicates a mechanism for β-lactam hydrolysis. Nature 343: 284288.
  • Philippon A, Arlet G & Jacoby G (2002) Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother 46: 111.
  • Powers RA, Caselli E, Focia PJ, Prati F & Shoichet BK (2001) Structures of ceftazidime and its transition-state analogue in complex with AmpC β-lactamase: implications for resistance mutations and inhibitor design. Biochemistry 40: 92079214.