• Bento FM, Camargo FA, Okeke BC & Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96: 10491055.
  • Bouchez T, Patureau D, Dabert P, Juretschko S, Dore J, Delgenes P, Moletta R & Wagner M (2000) Ecological study of a bioaugmentation failure. Environ Microbiol 2: 179190.
  • Byuntae L, Anthony LP, Alfred F & Theodore BB (1991) Biodegradation of degradable plastic polyethylene by Phanerocheate and Streptomyces species. Appl Environ Microbiol 57: 678688.
  • Choi KH & Dobbs FC (1999) Comparison of two kinds of BiOLOG microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microbiol Methods 36: 203213.
  • Fujimaki T, Watanabe N, Moteki Y & Imaizumi M (1995) Processibility of a new biodegradable aliphatic polyester ‘Bionolle’. Fourth International Workshop on Biodegradable Plastics and Polymers. 11–14 October 1990, New Hampshire, USA.
  • Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24: 289300.
  • Harcha BD, Corrella RL, Meech W, Kirkbyc CA & Pankhurst CE (1997) Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J Microbiol Methods 30: 91101.
  • Hoang KC, Tseng M & Shu WJ (2007) Degradation of polyethylene succinate (PES) by a new thermophilic Microbispora strain. Biodegradation 18: 333342.
  • Ishii N, Inoue Y, Shimada KI, Tezuka Y, Mitomo H & Kasuya KI (2007) Fungal degradation of poly(ethylene succinate). Polym Degrad Stab 92: 4452.
  • Liu GH, Rajendran N, Amemiya T & Itoh K (2011) Bacterial community structure analysis of sediment in the Sagami River, Japan using a rapid approach based on two-dimensional DNA gel electrophoresis mapping with selective primer pairs. Environ Monit Assess 182: 187195.
  • Margesin R, Walder G & Schinner F (2000) The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnol 20: 313333.
  • Mayr E (1942) Systematics and Origin of Species. Columbia University Press, New York.
  • Mayr E (1954) Change of genetic environment and evolution. Evolution as a Process (Huxley J, Hardy AC & Ford EB, eds), pp. 157180. Allen and Unwin, London.
  • Mueller JG, Resnick SM, Shelton ME & Pritchard PH (1992) Effect of inoculation on the biodegradation of weathered Prudhoe Bay crude oil. J Ind Microbiol 10: 95102.
  • Reardon CL, Cummings DE, Petzke LM, Kinsall BL, Watson DB, Peyton BM & Geesey GG (2004) Composition and diversity of microbial communities recovered from surrogate minerals incubated in an acidic uranium-contaminated aquifer. Appl Environ Microbiol 70: 60376046.
  • Tansengco ML & Tokiwa Y (1998) Thermophilic microbial degradation of poly(ethylene succinate). World J Microbiol Biotechnol 14: 133138.
  • Teng Y, Luo Y, Sun M, Liu Z, Li Z & Christie P (2010) Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresour Technol 101: 34373443.
  • Tezuka Y, Ishii N, Kasuya KI & Mitomo H (2004) Degradation of poly(ethylene succinate) by mesophilic bacteria. Polym Degrad Stab 84: 115121.
  • Tribedi P & Sil AK (2013) Bioaugmentation of polyethylene succinate contaminated soil with Pseudomonas sp. AKS2 results in increased microbial activity and better polymer degradation. Environ Sci Pollut Res Int 20: 13181326.
  • Tribedi P, Sarkar S, Mukherjee K & Sil AK (2012) Isolation of a novel Pseudomonas sp. from soil that can efficiently degrade polyethylene succinate. Environ Sci Pollut Res Int 19: 21152124.