Transport and catabolism of the sialic acids N-glycolylneuraminic acid and 3-keto-3-deoxy-d-glycero-d-galactonononic acid by Escherichia coli K-12


Correspondence: Gavin H. Thomas, Department of Biology, Area 10, University of York, Wentworth Way, Heslington, York YO10 5DD, UK. Tel.: +44 1904 328678; fax: +44 1904 328825; e-mail:


Escherichia coli can transport and catabolize the common sialic acid, N-acetylneuraminic acid (Neu5Ac), as a sole source of carbon and nitrogen, which is an important mucus-derived carbon source in the mammalian gut. Herein we demonstrate that E. coli can also grow efficiently on the related sialic acids, N-glycolylneuraminic acid (Neu5Gc) and 3-keto-3-deoxy-d-glycero-d-galactonononic acid (KDN), which are transported via the sialic acid transporter NanT and catabolized using the sialic acid aldolase NanA. Catabolism of Neu5Gc uses the same pathway as Neu5Ac, likely producing glycolate instead and acetate during its breakdown and catabolism of KDN requires NanA activity, while other components of the Neu5Ac catabolism pathway are non-essential. We also demonstrate that these two sialic acids can support growth of an E. colinanT strain expressing sialic acid transporters from two bacterial pathogens, namely the tripartite ATP-independent periplasmic transporter SiaPQM from Haemophilus influenzae and the sodium solute symport transporter STM1128 from Salmonella enterica ssp. Typhimurium, suggesting that the ability to use Neu5Gc and KDN in addition to Neu5Ac is present in a number of human pathogens.