SEARCH

SEARCH BY CITATION

References

  • Allen S, Zaleski A, Johnston JW, Gibson BW & Apicella MA (2005) Novel sialic acid transporter of Haemophilus influenzae. Infect Immun 73: 52915300.
  • Almagro-Moreno S & Boyd EF (2009) Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine. Infect Immun 77: 38073816.
  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL & Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.
  • Bardor M, Nguyen DH, Diaz S & Varki A (2005) Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem 280: 42284237.
  • Bergfeld AK, Pearce OM, Diaz SL, Pham T & Varki A (2012) Metabolism of vertebrate amino sugars with N-glycolyl groups: elucidating the intracellular fate of the non-human sialic acid N-glycolylneuraminic acid. J Biol Chem 287: 2886528881.
  • Bertin Y, Chaucheyras-Durand F, Robbe-Masselot C, Durand A, de la FA, Harel J, Cohen PS, Conway T, Forano E & Martin C (2013) Carbohydrate utilization by enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal content. Environ Microbiol 15: 610622.
  • Bouchet V, Hood DW, Li J et al. (2003) Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. P Natl Acad Sci USA 100: 88988903.
  • Chang DE, Smalley DJ, Tucker DL et al. (2004) Carbon nutrition of Escherichia coli in the mouse intestine. P Natl Acad Sci USA 101: 74277432.
  • Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL, Warren ST & Varki A (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. P Natl Acad Sci USA 95: 1175111756.
  • Chowdhury N, Norris J, McAlister E, Lau K, Thomas GH & Boyd EF (2012) The VC1777-VC1779 proteins are members of a sialic acid-specific subfamily of TRAP transporters (SiaPQM) and constitute the sole route of sialic acid uptake in the human pathogen Vibrio cholerae. Microbiology 158(Pt 8): 21582167.
  • Comb GD & Roseman S (1960) The sialic acids. I. The structure and enzymatic synthesis of N-acetylneuraminic acid. J Biol Chem 235: 25292537.
  • Datsenko KA & Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. P Natl Acad Sci 97: 66406645.
  • Inoue S & Kitajima K (2006) KDN (deaminated neuraminic acid): dreamful past and exciting future of the newest member of the sialic acid family. Glycoconj J 23: 277290.
  • Johnston JW, Zaleski A, Allen S, Mootz JM, Armbruster D, Gibson BW, Apicella MA & Munson RS Jr (2007) Regulation of sialic acid transport and catabolism in Haemophilus influenzae. Mol Microbiol 66: 2639.
  • Johnston JW, Coussens NP, Allen S, Houtman JC, Turner KH, Zaleski A, Ramaswamy S, Gibson BW & Apicella MA (2008) Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019. J Biol Chem 283: 855865.
  • Johnston JW, Shamsulddin H, Miller AF & Apicella MA (2010) Sialic acid transport and catabolism are cooperatively regulated by SiaR and CRP in nontypeable Haemophilus influenzae. BMC Microbiol 10: 240.
  • Kalivoda KA, Steenbergen SM, Vimr ER & Plumbridge J (2003) Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. J Bacteriol 185: 48064815.
  • Kim BS, Hwang J, Kim MH & Choi SH (2011) Cooperative regulation of the Vibrio vulnificus nan gene cluster by NanR protein, cAMP receptor protein, and N-acetylmannosamine 6-phosphate. J Biol Chem 286: 4088940899.
  • Kitajima K, Kuroyanagi H, Inoue S, Ye J, Troy FA & Inoue Y (1994) Discovery of a new type of sialidase, “KDNase”, which specifically hydrolyzes deaminoneuraminyl (3-deoxy-d-glycero-d-galacto-2-nonulosonic acid) but not N-acylneuraminyl linkages. J Biol Chem 269: 2141521419.
  • Larion M, Moore LB, Thompson SM & Miller BG (2007) Divergent evolution of function in the ROK sugar kinase superfamily: role of enzyme loops in substrate specificity. Biochemistry 46: 1356413572.
  • Martinez J, Steenbergen S & Vimr E (1995) Derived structure of the putative sialic acid transporter from Escherichia coli predicts a novel sugar permease domain. J Bacteriol 177: 60056010.
  • Muller A, Severi E, Mulligan C, Watts AG, Kelly DJ, Wilson KS, Wilkinson AJ & Thomas GH (2006) Conservation of structure and mechanism in primary and secondary transporters exemplified by SiaP, a sialic acid binding virulence factor from Haemophilus influenzae. J Biol Chem 281: 2221222222.
  • Mulligan C, Geertsma ER, Severi E, Kelly DJ, Poolman B & Thomas GH (2009) The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. P Natl Acad Sci USA 106: 17781783.
  • Mulligan C, Leech AP, Kelly DJ & Thomas GH (2012) The membrane proteins SiaQ and SiaM Form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae. J Biol Chem 287: 35983608.
  • Neidhardt FC, Bloch PL & Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119: 736747.
  • Pellicer MT, Badia J, Aguilar J & Baldoma L (1996) glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J Bacteriol 178: 20512059.
  • Perkins TT, Davies MR, Klemm EJ et al. (2013) ChIP-seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization. Mol Microbiol 87: 526538.
  • Plumbridge J & Vimr E (1999) Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J Bacteriol 181: 4754.
  • Roy S, Douglas CW & Stafford GP (2010) A novel sialic acid utilization and uptake system in the periodontal pathogen Tannerella forsythia. J Bacteriol 192: 22852293.
  • Schauer R (2004) Sialic acids: fascinating sugars in higher animals and man. Zoology (Jena) 107: 4964.
  • Severi E, Randle G, Kivlin P, Whitfield K, Young R, Moxon R, Kelly D, Hood D & Thomas GH (2005) Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 58: 11731185.
  • Severi E, Hood DW & Thomas GH (2007) Sialic acid utilization by bacterial pathogens. Microbiology 153: 28172822.
  • Severi E, Hosie AH, Hawkhead JA & Thomas GH (2010) Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters. FEMS Microbiol Lett 304: 4754.
  • Shashkov AS, Kosmachevskaya LN, Streshinskaya GM, Evtushenko LI, Bueva OV, Denisenko VA, Naumova IB & Stackebrandt E (2002) A polymer with a backbone of 3-deoxy-glycero-galacto-non-ulopyranosonic acid, a teichuronic acid, and a glucosylated ribitol teichoic acid in the cell wall of plant pathogenic Streptomyces sp. VKM Ac2124. Eur J Biochem 269: 60206025.
  • Sproul AA, Lambourne LT, Jean-Jacques DJ & Kornberg HL (2001) Genetic control of manno(fructo)kinase activity in Escherichia coli. P Natl Acad Sci USA 98: 1525715259.
  • Stafford G, Roy S, Honma K & Sharma A (2012) Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast!. Mol Oral Microbiol 27: 1122.
  • Tangvoranuntakul P, Gagneux P, Diaz S, Bardor M, Varki N, Varki A & Muchmore E (2003) Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. P Natl Acad Sci USA 100: 1204512050.
  • Taylor RE, Gregg CJ, Padler-Karavani V et al. (2010) Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J Exp Med 207: 16371646.
  • Telford JC, Yeung JH, Xu G, Kiefel MJ, Watts AG, Hader S, Chan J, Bennet AJ, Moore MM & Taylor GL (2011) The Aspergillus fumigatus sialidase is a 3-deoxy-d-glycero-d-galacto-2-nonulosonic acid hydrolase (KDNase): structural and mechanistic insights. J Biol Chem 286: 1078310792.
  • Teplyakov A, Obmolova G, Toedt J, Galperin MY & Gilliland GL (2005) Crystal structure of the bacterial YhcH protein indicates a role in sialic acid catabolism. J Bacteriol 187: 55205527.
  • Varki A (2009) Multiple changes in sialic acid biology during human evolution. Glycoconj J 26: 231245.
  • Vimr ER (2013) Unified theory of bacterial sialometabolism. How and why bacteria metabolize host sialic acids. ISRN Microbiol 2013: Article ID 816713. doi: 10.1155/2013/816713.
  • Vimr ER & Troy FA (1985a) Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol 164: 845853.
  • Vimr ER & Troy FA (1985b) Regulation of sialic acid metabolism in Escherichia coli: role of N-acylneuraminate pyruvate-lyase. J Bacteriol 164: 854860.
  • Vimr ER, Kalivoda KA, Deszo EL & Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68: 132153.
  • Wang RF & Kushner SR (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100: 195199.
  • Wang L, Lu Z, Allen KN, Mariano PS & Dunaway-Mariano D (2008) Human symbiont Bacteroides thetaiotaomicron synthesizes 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid (KDN). Chem Biol 15: 893897.