SEARCH

SEARCH BY CITATION

References

  • Ba S, Willems A, de Lajudie P et al. (2002) Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa. Syst Appl Microbiol 25: 130145.
  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84: 188198.
  • Broughton WJ, Jabbouri S & Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182: 56415652.
  • Broughton WJ, Hanin M, Relic B et al. (2006) Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234-legume symbioses. J Bacteriol 188: 56415652.
  • Cazebonne C, Vega AI, Varela DA & Cardemil LA (1999) Salinity effects on germination and growth of Prosopis chilensis. Rev Chil Hist Nat 72: 8391.
  • Coba de la Peña T & Pueyo J (2012) Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agron Sustain Dev 32: 6591.
  • Corwin D, Kaffka S, Hopmans J, Mori Y, van Groenigen J, van Kessel C, Lesch S & Oster J (2003) Assessment and field-scale mapping of soil quality properties of a saline-sodic soil. Geoderma 114: 231259.
  • Dardanelli MS, Fernandez de Cordoba FJ, Rosario Espuny M, Rodriguez Carvajal MA, Soria Diaz ME, Gil Serrano AM, Okon Y & Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and nod factor production under salt stress. Soil Biol Biochem 40: 27132721.
  • Dardanelli MS, Manyani H, Gonzalez-Barroso S, Rodriguez-Carvajal MA, Gil-Serrano AM, Espuny MR, Lopez-Baena FJ, Bellogin RA, Megias M & Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium PGPR Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328: 483493.
  • Dardanelli MS, Fernandez de Cordoba FJ, Estevez J et al. (2012) Changes in flavonoids secreted by phaseolus vulgaris roots in the presence of salt and the plant growth-promoting rhizobacterium Chryseobacterium balustinum. Appl Soil Ecol 57: 3138.
  • Demont N, Debelle F, Aurelle H, Denarie J & Prome JC (1993) Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic nodulation factors. J Biol Chem 268: 2013420142.
  • D'Haeze W, Mergaert P, Prome JC & Holsters M (2000) Nod factor requirements for efficient stem and root nodulation of the tropical legume Sesbania rostrata. J Biol Chem 275: 1567615684.
  • Dominguez-Ferreras A, Perez-Arnedo R, Becker A, Olivares J, Soto MJ & Sanjuan J (2006) Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J Bacteriol 188: 76177625.
  • Domon B & Costello C (1988) A systematic nomenclature for carbohydrate fragmentations in fab-ms ms spectra of glycoconjugates. Glycoconj J 5: 397409.
  • Duzan HM, Zhou X, Souleimanov A & Smith DL (2004) Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J Exp Bot 55: 26412646.
  • Elsheikh EAE (1998) Effects of salt on rhizobia and bradyrhizobia: a review. Ann Appl Biol 132: 507524.
  • Estevez J, Soria-Diaz ME, de Cordoba FF et al. (2009) Different and new nod factors produced by Rhizobium tropici CIAT899 following Na+ stress. FEMS Microbiol Lett 293: 220231.
  • Fall D, Diouf D, Neyra M, Diouf O & Diallo N (2009) Physiological and biochemical responses of Acacia seyal (Del.) seedlings under salt stress conditions. J Plant Nutr 32: 11221136.
  • FAO & IIASA (2012) GAEZ Global Agro-Ecological Zones v3.0.1 beta. Available at http://gaez.fao.org/Main.html# (accessed 31 July 2013).
  • Guasch-Vidal B, Estévez J, Dardanelli MS et al. (2013) High NaCl concentrations induce the nod genes of Rhizobium tropici CIAT899 in the absence of flavonoid inducers. Mol Plant-Microbe Interact 26: 451460.
  • Kamst E, Pilling J, Raamsdonk LM, Lugtenberg BJJ & Spaink HP (1997) Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in nod factor biosynthesis. J Bacteriol 179: 21032108.
  • Loh J, Yuen-Tsai J, Stacey M, Lohar D, Welborn A & Stacey G (2001) Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes. Mol Microbiol 42: 3746.
  • Minami E, Kouchi H, Carlson RW, Cohn JR, Kolli VK, Day RB, Ogawa T & Stacey G (1996) Cooperative action of lipo-chitin nodulation signals on the induction of the early nodulin, ENOD2, in soybean roots. Mol Plant-Microbe Interact 9: 574583.
  • Mustafa M (1986) Salt affected soils in the Sudan – their distribution, properties and management. Reclam Reveg Res 5: 115124.
  • Nick G, de Lajudie P, Eardly BD, Suomalainen S, Paulin L, Zhang XP, Gillis M & Lindström K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49: 13591368.
  • Nowak P, Soupas L, Thomas-Oates J & Lindström K (2004) Acacia Senegal and Prosopis chilensis-nodulating rhizobia Sinorhizobium arboris HAMBI 2361 and S. kostiense HAMBI 2362 produce tetra- and pentameric LCOs that are N-methylated, O-6-carbamoylated and partially sulfated. Carbohydr Res 339: 10611067.
  • Price NPJ, Relic B, Talmont E, Lewin A, Prome D, Pueppke SG, Maillet F, Denarie J, Prome JC & Broughton WJ (1992) Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulfated. Mol Microbiol 6: 35753584.
  • Räsänen LA, Sprent J & Lindström K (2001) Symbiotic properties of sinorhizobia isolated from Acacia and Prosopis nodules in Sudan and Senegal. Plant Soil 235: 193210.
  • Rehman S, Harris PJC, Bourne WF & Wilkin J (2000) The relationship between ions, vigour and salinity tolerance of Acacia seeds. Plant Soil 220: 229233.
  • Roche P, Lerouge P, Ponthus C & Promé JC (1991) Structural determination of bacterial nodulation factors involved in the Rhizobium meliloti-alfalfa symbiosis. J Biol Chem 266: 1093310940.
  • Schofield R & Kirkby M (2003) Application of salinization indicators and initial development of potential global soil salinization scenario under climatic change. Global Biogeochem Cycles 17: 1078.
  • Stokkermans TJW, Ikeshita S, Cohn J, Carlson RW, Stacey G, Ogawa T & Peters NK (1995) Structural requirements of synthetic and natural product lipo-chitin oligosaccharides for induction of nodule primordial on Glycine soja. Plant Physiol 108: 15871595.
  • Supanjani S, Lee K, Almaraz J, Zhou X & Smith D (2006) Effect of organic N source on bacterial growth, lipo-chitooligosaccharide production, and early soybean nodulation by Bradyrhizobium japonicum. Can J Microbiol 52: 227236.
  • Thrall PH, Millsom DA, Jeavons AC, Waayers M, Harvey GR, Bagnall DJ & Brockwell J (2005) Seed inoculation with effective root-nodule bacteria enhances revegetation success. J Appl Ecol 42: 740751.
  • Zahran HH & Sprent JI (1986) Effects of sodium-chloride and polyethylene-glycol on root-hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167: 303309.
  • Zevenhuizen LPTM (1986) Selective synthesis of polysaccharides by Rhizobium trifolii, strain TA-1. FEMS Microbiol Lett 35: 4347.
  • Zhang XP, Harper R, Karsisto M & Lindström K (1991) Diversity of Rhizobium bacteria isolated from the root-nodules of leguminous trees. Int J Syst Bacteriol 41: 104113.