SEARCH

SEARCH BY CITATION

References

  • Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG & Carrano CJ (2009) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. P Natl Acad Sci USA 106: 1707117076.
  • Bali A, Blanco G, Hill S & Kennedy C (1992) Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Appl Environ Microbiol 58: 17111718.
  • Barney BM, Lee HI, Dos Santos PC, Hoffmann BM, Dean DR & Seefeldt LC (2006) Breaking the N-2 triple bond: insights into the nitrogenase mechanism. Dalton Trans 22772284.
  • Bar-Zeev E, Berman-Frank I, Stambler N et al. (2009) Transparent exopolymer particles (TEP) link phytoplankton and bacterial production in the Gulf of Aqaba. Aquat Microb Ecol 56: 217225.
  • Bold HC (1949) The morphology of Chlamydomonas chlamydogama sp. nov. Bull Torrey Bot Club 76: 101108.
  • Brechignac F & Schiller P (1992) Pilot CELSS based on a maltose-excreting Chlorella: concept and overview on the technological developments. Adv Space Res 12: 3336.
  • Brewin B, Woodley P & Drummond M (1999) The basis of ammonium release in nifL mutants of Azotobacter vinelandii. J Bacteriol 181: 73567362.
  • Cornish AS & Page WJ (1995) Production of the triacetecholate siderophore protochelin by Azotobacter vinelandii. Biometals 8: 332338.
  • Corzo A, Morillo JA & Rodríguez S (2000) Production of transparent exopolymer particles (TEP) in cultures of Chaetoceros calcitrans under nitrogen limitation. Aquat Microb Ecol 23: 6372.
  • De Philippis R & Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22: 151175.
  • Demange P, Bateman A, Dell A & Abdallah MA (1988) Structure of azotobactin D, a siderophore of Azotobacter vinelandii strain D (CCM 289). Biochemistry 27: 27452752.
  • D'Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J & Lewis K (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17: 254264.
  • Fekete FA, Spence JT & Emery T (1983) Siderophores produced by nitrogen-fixing Azotobacter vinelandii OP in iron-limited continuous culture. Appl Environ Microbiol 46: 12971300.
  • Gimmestad M, Steigedal M, Ertesvåg H, Moreno S, Christensen BE, Espín G & Valla S (2006) Identification and characterization of an Azotobacter vinelandii type I secretion system responsible for export of the AlgE-Type mannuronan C-5-epimerases. J Bacteriol 188: 55515560.
  • Gouveia L, Marques AE, da Silva TL & Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36: 821826.
  • Huyer M & Page WJ (1988) Zn2+ increases siderophore production in Azotobacter vinelandii. Appl Environ Microbiol 54: 26252631.
  • Ikeda S, Okubo T, Anda M et al. (2010) Community- and genome-based views of plant-associated bacteria: plant-bacterial interactions in soybean and rice. Plant Cell Physiol 51: 13981410.
  • Jones KM, Kobayashi H, Davies BW, Taga ME & Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5: 619633.
  • Li Y, Horsman M, Wang B, Wu N & Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81: 629636.
  • Mather MW, McReynolds LM & Yu CA (1995) An enhanced broad-host-range vector for Gram-negative bacteria: avoiding tetracycline phototoxicity during the growth of photosynthetic bacteria. Gene 156: 8588.
  • Ortiz-Marquez JCF, Nascimento MD, Dublan Mde L & Curatti L (2012) Association with an ammonium-excreting bacterium allows diazotrophic culture of oil-rich eukaryotic microalgae. Appl Environ Microbiol 78: 23452352.
  • Page WJ & Huyer M (1984) Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion. J Bacteriol 158: 496502.
  • Page WJ & Sadoff HL (1975) Relationship between calcium and uroinic acids in the encystment of Azotobacter vinelandii. J Bacteriol 122: 145151.
  • Page WJ, Collinson SK, Demange P, Dell A & Abdallah MA (1991) Azotobacter vinelandii strains of disparate origin produce azotobactin siderophores with identical structures. Biol Met 4: 217222.
  • Page WJ, Kwon E, Cornish AS & Tindale AE (2003) The csbX gene of Azotobacter vinelandii encodes an MFS efflux pump required for catecholate siderophore export. FEMS Microbiol Lett 228: 211216.
  • Palanché T, Blanc S, Hennard C, Abdallah MA & Albrecht-Gary AM (2004) Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophore of Azotobacter vinelandii. Inorg Chem 43: 11371152.
  • Passow U (2002) Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton. Mar Ecol Prog Ser 236: 112.
  • Prentki P & Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29: 303313.
  • Rodríguez-López JN, Serna-Rodríguez P, Tudela J, Varón R & García-Cánovas F (1991) A continuous spectrophotometric method for the determination of diphenolase activity of tyrosinase using 3,4-dihydroxymandelic acid. Anal Biochem 195: 369374.
  • Setubal JC, dos Santos P, Goldman BS et al. (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191: 45344545.
  • Tindale AE, Mehrotra M, Ottem D & Page WJ (2000) Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. Microbiology 146: 16171626.
  • Wichard T, Bellenger JP, Morel FMM & Kraepiel AML (2009) Role of the siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors. Environ Sci Technol 43: 72187224.
  • Wolf L (1997) Bioregeneration with maltose excreting Chlorella: system concept, technological development, and experiments. Adv Space Biol Med 6: 255274.
  • Yoneyama F, Yamamoto M, Hashimoto W & Murata K (2011) Azotobacter vinelandii gene clusters for two types of peptidic and catechol siderophores produced in response to molybdenum. J Appl Microbiol 111: 932938.