SEARCH

SEARCH BY CITATION

References

  • Andersen JB, Koch B, Nielsen TH, Sorensen D, Hansen M, Nybroe O, Christophersen C, Sorensen J, Molin S & Givskov M (2003) Surface motility in Pseudomonas sp DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149: 3746.
  • Berti AD, Greve NJ, Christensen QH & Thomas MG (2007) Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J Bacteriol 189: 63126323.
  • Burger M, Woods RG, McCarthy C & Beacham IR (2000) Temperature regulation of protease in Pseudomonas fluorescens LS107d2 by an ECF sigma factor and a transmembrane activator. Microbiology 146: 31493155.
  • Cui X, Harling R, Mutch P & Darling D (2005) Identification of N-3-hydroxyoctanoyl-homoserine lactone production in Pseudomonas fluorescens 5064, pathogenic to broccoli, and controlling biosurfactant production by quorum sensing. Eur J Plant Pathol 111: 297308.
  • de Bruijn I & Raaijmakers JM (2009a) Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP protease. J Bacteriol 191: 19101923.
  • de Bruijn I & Raaijmakers JM (2009b) Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens. Appl Environ Microbiol 75: 47534761.
  • de Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA & Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63: 417428.
  • de Bruijn I, de Kock MJD, de Waard P, van Beek TA & Raaijmakers JM (2008) Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 190: 27772789.
  • de Souza JT, de Boer M, de Waard P, van Beek TA & Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69: 71617172.
  • Dubern JF, Lagendijk EL, Lugtenberg BJJ & Bloemberg GV (2005) The heat shock genes dnaK, dnaJ, and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445. J Bacteriol 187: 59675976.
  • Dubern JF, Lugtenberg BJJ & Bloemberg GV (2006) The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J Bacteriol 188: 28982906.
  • Dubern JF, Coppoolse ER, Stiekema WJ & Bloemberg GV (2008) Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445. Microbiology 154: 20702083.
  • Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP & Hamoen LW (2007) Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 73: 34903496.
  • Dumenyo CK, Mukherjee A, Chun W & Chatterjee AK (1998) Genetic and physiological evidence for the production of N-acyl homoserine lactones by Pseudomonas syringae pv. syringae and other fluorescent plant pathogenic Pseudomonas species. Eur J Plant Pathol 104: 569582.
  • Finking R & Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58: 453488.
  • Gerard J, Lloyd R, Barsby T, Haden P, Kelly MT & Andersen RJ (1997) Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J Nat Prod 60: 223229.
  • Halgren A, Maselko M, Azevedo M, Mills D, Armstrong D & Banowetz G (2013) Genetics of germination-arrest factor (GAF) production by Pseudomonas fluorescens WH6: identification of a gene cluster essential for GAF biosynthesis. Microbiology 159: 3645.
  • Kimbrel JA, Givan SA, Halgren AB, Creason AL, Mills DI, Banowetz GM, Armstrong DJ & Chang JH (2010) An improved, high-quality draft genome sequence of the germination-arrest factor-producing Pseudomonas fluorescens WH6. BMC Genomics 11: 522.
  • Kinscherf TG & Willis DK (1999) Swarming by Pseudomonas syringae B728a requires gacS (lemA) and gacA but not the acyl-homoserine lactone biosynthetic gene ahlI. J Bacteriol 181: 41334136.
  • Kitten T, Kinscherf TG, McEvoy JL & Willis DK (1998) A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol Microbiol 28: 917929.
  • Koch B, Nielsen TH, Sorensen D, Andersen JB, Christophersen C, Molin S, Givskov M, Sorensen J & Nybroe O (2002) Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the gac two-component regulatory system. Appl Environ Microbiol 68: 45094516.
  • Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T & Ausubel FM (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. P Natl Acad Sci USA 103: 28332838.
  • Liehl P, Blight M, Vodovar N, Boccard F & Lemaitre B (2006) Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2: e56.
  • Lu SE, Scholz-Schroeder BK & Gross DC (2002) Characterization of the salA, syrF, and syrG regulatory genes located at the right border of the syringomycin gene cluster of Pseudomonas syringae pv. syringae. Mol Plant Microbe Interact 15: 4353.
  • Mascher T (2013) Signaling diversity and evolution of extracytoplasmic function (ECF) sigma factors. Curr Opin Microbiol 16: 148155.
  • Raaijmakers JM & Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50: 403424.
  • Raaijmakers JM, de Bruijn I & de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 19: 699710.
  • Raaijmakers JM, de Bruijn I, Nybroe O & Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34: 10371062.
  • Sullivan ER (1998) Molecular genetics of biosurfactant production. Curr Opin Biotechnol 9: 263269.
  • Vallet-Gely I, Novikov A, Augusto L, Liehl P, Bolbach G, Pechy-Tarr M, Cosson P, Keel C, Caroff M & Lemaitre B (2010) Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl Environ Microbiol 76: 910921.
  • van de Mortel JE, Ha T, Govers F & Raaijmakers JM (2009) Cellular responses of the late blight pathogen Phytophthora infestans to cyclic lipopeptide surfactants and their dependence on G proteins. Appl Environ Microbiol 75: 49504957.
  • van der Crabben SN, Verhoeven-Duif NM, Brilstra EH, Van Maldergem L, Coskun T, Rubio-Gozalbo E, Berger R & de Koning TJ (2013) An update on serine deficiency disorders. J Inherit Metab Dis 36: 613619.
  • Wang N, Lu SE, Records AR & Gross DC (2006) Characterization of the transcriptional activators SalA and SyrF, which are required for syringomycin and syringopeptin production by Pseudomonas syringae pv. syringae. J Bacteriol 188: 32903298.