SEARCH

SEARCH BY CITATION

References

  • Caponero A, Contesini AM & Iacobellis NS (1995) Population diversity of Pseudomonas syringae subsp. savastanoi on olive and oleander. Plant Pathol 44: 848855.
  • Comai L & Kosuge T (1980) Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J Bacteriol 143: 950957.
  • Filiatrault MJ, Stodghill PV, Myers CR et al. (2011) Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. PLoS One 6: e29335.
  • Fouts DE, Abramovitch RB, Alfano JR et al. (2002) Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. P Natl Acad Sci USA 99: 22752280.
  • Gaffney TD, da Costa e Silva O, Yamada T & Kosuge T (1990) Indoleacetic acid operon of Pseudomonas syringae subsp. savastanoi: transcription analysis and promoter identification. J Bacteriol 172: 55935601.
  • Gielen J, De Beuckeleer M, Seurinck J, Deboeck F, De Greve H, Lemmers M, Van Montagu M & Schell J (1984) The complete nucleotide sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J 3: 835846.
  • Glass NL & Kosuge T (1986) Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp. savastanoi. J Bacteriol 166: 598603.
  • Glass NL & Kosuge T (1988) Role of indoleacetic acid-lysine synthetase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp. savastanoi. J Bacteriol 170: 23672373.
  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557580.
  • Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ & Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 7786.
  • Hosni T, Moretti C, Devescovi G, Suarez-Moreno ZR, Fatmi MB, Guarnaccia C, Pongor S, Onofri A, Buonaurio R & Venturi V (2011) Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. ISME J 5: 18571870.
  • Huynh TV, Dahlbeck D & Staskawicz BJ (1989) Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245: 13741377.
  • Inze D, Follin A, Velten J, Velten L, Prinsen E, Rudelsheim P, Van Onckelen H, Schell J & Van Montagu M (1987) The Pseudomonas savastanoi tryptophan-2-mono-oxygenase is biologically active in Nicotiana tabacum. Planta 172: 555562.
  • Matas IM, Pérez-Martínez I, Quesada JM, Rodríguez-Herva JJ, Penyalver R & Ramos C (2009) Pseudomonas savastanoi pv. savastanoi contains two iaaL paralogs, one of which exhibits a variable number of a trinucleotide (TAC) tandem repeat. Appl Environ Microbiol 75: 10301035.
  • Matas IM, Lambertsen L, Rodríguez-Moreno L & Ramos C (2012) Identification of novel virulence genes and metabolic pathways required for full fitness of Pseudomonas savastanoi pv. savastanoi in olive (Olea europaea) knots. New Phytol 196: 11821196.
  • Matas IM, Castañeda-Ojeda MP, Aragón IM, Antúnez-Lamas M, Murillo J, Rodriquez-Palenzuela P, Lopez-Solanilla E & Ramos C (2014) Translocation and functional analysis of Pseudomonas savastanoi pv. savastanoi NCPPB 3335 type III secretion system effectors reveals two novel effector families of the Pseudomonas syringae complex. Mol Plant Microbe Interact doi: 101094/MPMI-07-13-0206-R.
  • Mazzola M & White FF (1994) A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production. J Bacteriol 176: 13741382.
  • Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
  • Moretti C, Ferrante P, Hosni T, Valentini F, D'Onghia A, Fatmi MB & Buonaurio R (2008) Characterization of Pseudomonas savastanoi pv. savastanoi strains collected from olive trees in different countries. Pseudomonas syringae Pathovars and Related Pathogens – Identification, Epidemiology and Genomics (Fatmi MB, Collmer A, Iacobellis N, Mansfield J, Murillo J, Schaad N & Ullrich M, eds), pp. 321329. Springer, Dordrecht.
  • Palm CJ, Gaffney T & Kosuge T (1989) Cotranscription of genes encoding indoleacetic acid production in Pseudomonas syringae subsp. savastanoi. J Bacteriol 171: 10021009.
  • Palmer BR & Marinus MG (1994) The dam and dcm strains of Escherichia coli – a review. Gene 143: 112.
  • Patten CL, Blakney AJ & Coulson TJ (2012) Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 39: 395415.
  • Penyalver R, García A, Ferrer A et al. (2006) Factors affecting Pseudomonas savastanoi pv. savastanoi plant inoculations and their use for evaluation of Olive cultivar susceptibility. Phytopathology 96: 313319.
  • Pérez-Martinez I, Rodriguez-Moreno L, Lambertsen L, Matas IM, Murillo J, Tegli S, Jimenez AJ & Ramos C (2010) Fate of a Pseudomonas savastanoi pv. savastanoi type III secretion system mutant in olive plants (Olea europaea L.). Appl Environ Microbiol 76: 36113619.
  • Pérez-Martínez I, Rodríguez-Moreno L, Matas IM & Ramos C (2007) Strain selection and improvement of gene transfer for genetic manipulation of Pseudomonas savastanoi isolated from olive knots. Res Microbiol 158: 6069.
  • Pérez-Martínez I, Zhao Y, Murillo J, Sundin GW & Ramos C (2008) Global genomic analysis of Pseudomonas savastanoi pv. savastanoi plasmids. J Bacteriol 190: 625635.
  • Ramos C, Matas IM, Bardaji L, Aragón IM & Murillo J (2012) Pseudomonas savastanoi pv. savastanoi: some like it knot. Mol Plant Pathol 13: 9981009.
  • Rico A & Preston GM (2008) Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant Microbe Interact 21: 269282.
  • Rodríguez-Moreno L, Barceló-Munoz A & Ramos C (2008) In vitro analysis of the interaction of Pseudomonas savastanoi pvs. savastanoi and nerii with micropropagated olive plants. Phytopathology 98: 815822.
  • Rodríguez-Palenzuela P, Matas IM, Murillo J et al. (2010) Annotation and overview of the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environ Microbiol 12: 16041620.
  • Spaepen S & Vanderleyden J (2010) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3: 113.
  • Spaink HP, Okker RJH, Wijffelman CA, Pees E & Lugtenberg BJJ (1987) Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9: 2739.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 27312739.
  • Van Puyvelde S, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J & Spaepen S (2011) Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microb Ecol 61: 723728.
  • Yamada T, Palm CJ, Brooks B & Kosuge T (1985) Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. P Natl Acad Sci USA 82: 65226526.
  • Yamada T, Lee PD & Kosuge T (1986) Insertion sequence elements of Pseudomonas savastanoi: nucleotide sequence and homology with Agrobacterium tumefaciens transfer DNA. P Natl Acad Sci USA 83: 82638267.
  • Yang S, Zhang Q, Guo J, Charkowski AO, Glick BR, Ibekwe AM, Cooksey DA & Yang CH (2007) Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microbiol 73: 10791088.
  • Zumaquero A, Macho AP, Rufian JS & Beuzon CR (2010) Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant. J Bacteriol 192: 44744488.