SEARCH

SEARCH BY CITATION

References

  • Abdeev RM, Goldenkova IV, Musiychuk KA & Piruzian ES (2001) Exploring the properties of thermostable Clostridium thermocellum cellulase CelE for the purpose of its expression in plants. Biochemistry (Mosc) 66: 808813.
  • Adams MWW (1993) Enzymes and proteins from organisms that grow near and above 100 °C. Annu Rev Microbiol 47: 627658.
  • Adams MWW, Perler FB & Kelly RM (1995) Extremozymes: expanding the limits of biocatalysis. Nat Biotechnol 13: 662668.
  • Adams JJ, Pal G, Jia Z & Smith SP (2006) Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex. P Natl Acad Sci USA 103: 305310.
  • Ahsan M, Matsumoto M, Karita S, Kimura T, Sakka K & Ohmiya K (1997) Purification and characterization of the family J catalytic domain derived from the Clostridium thermocellum endoglucanase CelJ. Biosci Biotechnol Biochem 61: 427431.
  • Aksenova HY, Rainey FA, Janssen PH, Zavarzin GA & Morgan HW (1992) Spirochaeta thermophila sp. nov., an obligately anaerobic, polysaccharolytic, extremely thermophilic bacterium. Int J Syst Bacteriol 42: 175177.
  • Alahuhta M, Xu Q, Bomble YJ et al. (2010) The unique binding mode of cellulosomal CBM4 from Clostridium thermocellum cellobiohydrolase A. J Mol Biol 402: 374387.
  • Alahuhta M, Luo Y, Ding S-Y, Himmel ME & Lunin VV (2011) Structure of CBM4 from Clostridium thermocellum cellulase K. Acta Crystallogr Sect F Struct Biol Cryst Commun 67: 527530.
  • Alikhan N-F, Petty NK, Zakour NLB & Beatson SA (2011) blast Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12: 402.
  • Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G & Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82: 340349.
  • Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403410.
  • Alzari PM, Souchon H & Dominguez R (1996) The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure 4: 265275.
  • Anbar M, Lamed R & Bayer EA (2010) Thermostability enhancement of Clostridium thermocellum cellulosomal endoglucanase Cel8A by a single glycine substitution. ChemCatChem 2: 9971003.
  • Anbar M, Gul O, Lamed R, Sezerman UO & Bayer EA (2012) Improved thermostability of Clostridium thermocellum endoglucanase Cel8A using consensus-guided mutagenesis. Appl Environ Microbiol 78: 34583464.
  • Andrews G, Lewis D, Notey J, Kelly R & Muddiman D (2010) Part I: characterization of the extracellular proteome of the extreme thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS. Anal Bioanal Chem 398: 377389.
  • Angelov A, Loderer C, Pompei S & Liebl W (2011) Novel family of carbohydrate-binding modules revealed by the genome sequence of Spirochaeta thermophila DSM 6192. Appl Environ Microbiol 77: 54835489.
  • Arai T, Ohara H, Karita S, Kimura T, Sakka K & Ohmiya K (2001) Sequence of celQ and properties of CelQ, a component of the Clostridium thermocellum cellulosome. Appl Microbiol Biotechnol 57: 660666.
  • Argyros DA, Tripathi SA, Barrett TF et al. (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77: 82888294.
  • Assareh R, Shahbani Zahiri H, Akbari Noghabi K, Aminzadeh S & Bakhshi khaniki G (2012) Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws. Bioresour Technol 120: 99105.
  • Avellar BK & Glasser WG (1998) Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenergy 14: 205218.
  • Bahari L, Gilad Y, Borovok I et al. (2011) Glycoside hydrolases as components of putative carbohydrate biosensor proteins in Clostridium thermocellum. J Ind Microbiol Biotechnol 38: 825832.
  • Baker J, Adney W, Nleves R, Thomas S, Wilson D & Himmel M (1994) A new thermostable endoglucanase, Acidothermus cellulolyticus E1. Appl Biochem Biotechnol 45–46: 245256.
  • Balan V, Sousa LDC, Chundawat SPS, Marshall D, Sharma LN, Chambliss CK & Dale BE (2009) Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra). Biotechnol Prog 25: 365375.
  • Bao Q, Tian Y, Li W et al. (2002) A complete sequence of the T. tengcongensis genome. Genome Res 12: 689700.
  • Barabote RD, Xie G, Leu DH et al. (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into Its ecophysiological and evolutionary adaptations. Genome Res 19: 10331043.
  • Barabote RD, Parales JV, Guo Y-Y, Labavitch JM, Parales RE & Berry AM (2010) Xyn10A, a thermostable endoxylanase from Acidothermus cellulolyticus 11B. Appl Environ Microbiol 76: 73637366.
  • Bayer EA & Lamed R (1986) Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J Bacteriol 167: 828836.
  • Bayer EA, Kenig R & Lamed R (1983) Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156: 818827.
  • Bayer EA, Setter E & Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163: 552559.
  • Bayer EA, Morag E & Lamed R (1994) The cellulosome – a treasure-trove for biotechnology. Trends Biotechnol 12: 379386.
  • Bayer EA, Coutinho PM & Henrissat B (1999) Cellulosome-like sequences in Archaeoglobus fulgidus: an enigmatic vestige of cohesin and dockerin domains. FEBS Lett 463: 277280.
  • Bayer EA, Belaich JP, Shoham Y & Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58: 521554.
  • Bayer E, Shoham Y & Lamed R (2006) Cellulose-decomposing bacteria and their enzyme systems. The Prokaryotes (Dworkin M, Falkow S, Rosenberg E, Schleifer K-H & Stackebrandt E, eds), pp. 578617. Springer, New York.
  • Beadle BM, Baase WA, Wilson DB, Gilkes NR & Shoichet BK (1999) Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme. Biochemistry 38: 25702576.
  • Beckham GT, Bomble YJ, Bayer EA, Himmel ME & Crowley MF (2011) Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotechnol 22: 231238.
  • Béguin P, Cornet P & Millet J (1983) Identification of the endoglucanase encoded by the celB gene of Clostridium thermocellum. Biochimie 65: 495500.
  • Béki E, Nagy I, Vanderleyden J et al. (2003) Cloning and heterologous expression of a β-d-mannosidase (EC 3.2.1.25)-encoding gene from Thermobifida fusca TM51. Appl Environ Microbiol 69: 19441952.
  • Berger E, Zhang D, Zverlov VV & Schwarz WH (2007) Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol Lett 268: 194201.
  • Bergquist PL, Gibbs MD, Morris DD, Te'o VSJ, Saul DJ & Morgan HW (1999) Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28: 99110.
  • Bergquist P, Te'o V, Gibbs M, Cziferszky A, de Faria F, Azevedo M & Nevalainen H (2002) Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts. Extremophiles 6: 177184.
  • Berka RM, Grigoriev IV, Otillar R et al. (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29: 922927.
  • Bharadwaj R, Chen Z, Datta S et al. (2010) Microfluidic glycosyl hydrolase screening for biomass-to-biofuel conversion. Anal Chem 82: 95139520.
  • Blaby-Haas CE & de Crécy-Lagard V (2011) Mining high-throughput experimental data to link gene and function. Trends Biotechnol 29: 174182.
  • Blum DL, Kataeva IA, Li XL & Ljungdahl LG (2000) Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 182: 13461351.
  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW & Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19: 210217.
  • Blumer-Schuette SE, Lewis DL & Kelly RM (2010) Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol 76: 80848092.
  • Blumer-Schuette SE, Ozdemir I, Mistry D et al. (2011) Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus. J Bacteriol 193: 14831484.
  • Blumer-Schuette SE, Giannone RJ, Zurawski JV et al. (2012) Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J Bacteriol 194: 40154028.
  • Bokinsky G, Peralta-Yahya PP, George A et al. (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. P Natl Acad Sci USA 108: 1994919954.
  • Bolshakova EV, Ponomariev AA, Novikov AA, Svetlichnyi VA & Velikodvorskaya GA (1994) Cloning and expression of genes coding for carbohydrate degrading enzymes of Anaerocellum thermophilum in Escherichia coli. Biochem Biophys Res Commun 202: 10761080.
  • Bomble YJ, Beckham GT, Matthews JF, Nimlos MR, Himmel ME & Crowley MF (2011) Modeling the self-assembly of the cellulosome enzyme complex. J Biol Chem 286: 56145623.
  • Boraston AB, Bolam DN, Gilbert HJ & Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382: 769781.
  • Borkhardt B, Harholt J, Ulvskov P, Ahring BK, Jørgensen B & Brinch-Pedersen H (2010) Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo-xylanases. Plant Biotechnol J 8: 363374.
  • Brás JLA, Cartmell A, Carvalho ALM et al. (2011) Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. P Natl Acad Sci USA 108: 52375242.
  • Bredholt S, Sonne-Hansen J, Nielsen P, Mathrani IM & Ahring BK (1999) Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int J Syst Bacteriol 49: 991996.
  • Bronnenmeier K, Kern A, Liebl W & Staudenbauer WL (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 61: 13991407.
  • Brown SD, Raman B, McKeown CK, Kale SP, He Z & Mielenz JR (2007) Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray. Appl Biochem Biotechnol 137–140: 663674.
  • Brown SD, Guss AM, Karpinets TV et al. (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. P Natl Acad Sci USA 108: 1375213757.
  • Brown SD, Lamed R, Morag E et al. (2012) Draft genome sequences for Clostridium thermocellum wild-type strain YS and derived cellulose adhesion-defective mutant strain AD2. J Bacteriol 194: 32903291.
  • Brumm P, Hermanson S, Hochstein B, Boyum J, Hermersmann N, Gowda K & Mead D (2011) Mining Dictyoglomus turgidum for enzymatically active carbohydrases. Appl Biochem Biotechnol 163: 205214.
  • Brunecky R, Alahuhta M, Bomble YJ, Xu Q, Baker JO, Ding S-Y, Himmel ME & Lunin VV (2012) Structure and function of the Clostridium thermocellum cellobiohydrolase A X1-module repeat: enhancement through stabilization of the CbhA complex. Acta Crystallogr D 68: 292299.
  • Bult CJ, White O, Olsen GJ et al. (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273: 10581073.
  • Burdette DS, Jung SH, Shen GJ, Hollingsworth RI & Zeikus JG (2002) Physiological function of alcohol dehydrogenases and long-chain (C30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl Environ Microbiol 68: 19141918.
  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V & Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37: D233D238.
  • Carere CR, Sparling R, Cicek N & Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9: 13421360.
  • Carr PA & Church GM (2009) Genome engineering. Nat Biotechnol 27: 11511162.
  • Carvalho AL, Dias FM, Prates JA et al. (2003) Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. P Natl Acad Sci USA 100: 1380913814.
  • Carvalho AL, Pires VMR, Gloster TM et al. (2005) Insights into the structural determinants of cohesin-dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA. J Mol Biol 349: 909915.
  • Cascone R (2008) Biobutanol – a replacement for bioethanol? Chem Eng Prog 104: S4S9.
  • Cha M, Chung D, Elkins JG, Guss AM & Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6: 85.
  • Chain PSG, Grafham DV, Fulton RS et al. (2009) Genome project standards in a new era of sequencing. Science 326: 236237.
  • Charnock SJ, Bolam DN, Turkenburg JP, Gilbert HJ, Ferreira LMA, Davies GJ & Fontes CMGA (2000) The X6 “thermostabilizing” domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39: 50135021.
  • Chauvaux S, Souchon H, Alzari PM, Chariot P & Beguin P (1995) Structural and functional analysis of the metal-binding sites of Clostridium thermocellum endoglucanase CelD. J Biol Chem 270: 97579762.
  • Chen F & Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25: 759761.
  • Chertkov O, Sikorski J, Nolan M et al. (2011) Complete genome sequence of Thermomonospora curvata type strain (B9T). Stand Genomic Sci 4: 1322.
  • Chhabra SR & Kelly RM (2002) Biochemical characterization of Thermotoga maritima endoglucanase Cel74 with and without a carbohydrate binding module (CBM). FEBS Lett 531: 375380.
  • Chhabra SR, Shockley KR, Ward DE & Kelly RM (2002) Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. Appl Environ Microbiol 68: 545554.
  • Cho BK, Palsson B & Zengler K (2011) Deciphering the regulatory codes in bacterial genomes. Biotechnol J 6: 10521063.
  • Choi S & Ljungdahl L (1996) Dissociation of the cellulosome of Clostridium thermocellum in the presence of ethylenediaminetetraacetic acid occurs with the formation of truncated polypeptides. Biochemistry 35: 48974905.
  • Chung D, Farkas J, Huddleston JR, Olivar E & Westpheling J (2012) Methylation by a unique α-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725. PLoS ONE 7: e43844.
  • Chung D, Farkas J & Westpheling J (2013a) Detection of a novel active transposable element in Caldicellulosiruptor hydrothermalis and a new search for elements in this genus. J Ind Microbiol Biotechnol 40: 517521.
  • Chung D, Farkas J & Westpheling J (2013b) Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuels 6: 82.
  • Chung D, Cha M, Farkas J & Westpheling J (2013c) Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS ONE 8: e62881.
  • Clomburg JM & Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86: 419434.
  • Coleman HD, Samuels AL, Guy RD & Mansfield SD (2008) Perturbed lignification impacts tree growth in hybrid poplar- a function of sink strength, vascular integrity, and photosynthetic assimilation. Plant Physiol 148: 12291237.
  • Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE & Kelly RM (2006) Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 30: 872905.
  • Correia MA, Mazumder K, Bras JL et al. (2011) Structure and function of an arabinoxylan-specific xylanase. J Biol Chem 286: 2251022520.
  • Cota J, Alvarez TM, Citadini AP et al. (2011) Mode of operation and low-resolution structure of a multi-domain and hyperthermophilic endo-beta-1,3-glucanase from Thermotoga petrophila. Biochem Biophys Res Commun 406: 590594.
  • Cowan DA (1992) Biotechnology of the Archaea. Trends Biotechnol 10: 315323.
  • Cox B, Kislinger T & Emili A (2005) Integrating gene and protein expression data: pattern analysis and profile mining. Methods 35: 303314.
  • Craig SJ, Foong FC & Nordon R (2006) Engineered proteins containing the cohesin and dockerin domains from Clostridium thermocellum provides a reversible, high affinity interaction for biotechnology applications. J Biotechnol 121: 165173.
  • Cysewski GR & Wilke CR (1977) Rapid ethanol fermentations using vacuum and cell recycle. Biotechnol Bioeng 19: 11251143.
  • Dahlberg L, Holst O & Kristjansson JK (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl Microbiol Biotechnol 40: 6368.
  • Dale BE, Leong CK, Pham TK, Esquivel VM, Rios I & Latimer VM (1996) Hydrolysis of lignocellulosics at low enzyme levels: application of the AFEX process. Bioresour Technol 56: 111116.
  • Dam P, Kataeva I, Yang S-J et al. (2011) Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res 39: 32403254.
  • Darland G & Brock TD (1971) Bacillus acidocaldarius sp.nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol 67: 915.
  • Dassa B, Borovok I, Lamed R et al. (2012) Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics 13: 210.
  • de Vrije T, Mars A, Budde M, Lai M, Dijkema C, de Waard P & Claassen P (2007) Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 74: 13581367.
  • de Vrije T, Bakker R, Budde M, Lai M, Mars A & Claassen P (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2: 115.
  • Demain AL, Newcomb M & Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69: 124154.
  • Demishtein A, Karpol A, Barak Y, Lamed R & Bayer EA (2010) Characterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteins. J Mol Recognit 23: 525535.
  • Deng Y & Fong SS (2011) Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 13: 570577.
  • Di Lauro B, Rossi M & Moracci M (2006) Characterization of a β-glycosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. Extremophiles 10: 301310.
  • Di Lauro B, Strazzulli A, Perugino G et al. (2008) Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: identification of the active site residues. Biochim Biophys Acta 1784: 292301.
  • Ding S-Y, Adney WS, Vinzant TB, Decker SR, Baker JO, Thomas SR & Himmel ME (2003) Glycoside hydrolase gene cluster of Acidothermus cellulolyticus. Applications of Enzymes to Lignocellulosics, Vol. 855 (Mansfield SD & Saddler JN, eds), pp. 332360. American Chemical Society, Washington, DC.
  • Ding S-Y, Adney WS, Vinzant TB & Himmel ME (2006) Thermal tolerant mannanase from Acidothermus cellulolyticus. US Patent No. 7,112,429 B2.
  • Ding SY, Xu Q, Crowley M et al. (2008) A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr Opin Biotechnol 19: 218227.
  • Doi R (2008) Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann NY Acad Sci 1125: 267279.
  • Dominguez R, Souchon H & Alzari PM (1994) Characterization of two crystal forms of Clostridium thermocellum endoglucanase CelC. Proteins 19: 158160.
  • Driskill LE, Kusy K, Bauer MW & Kelly RM (1999) Relationship between glycosyl hydrolase inventory and growth physiology of the hyperthermophile Pyrococcus furiosus on carbohydrate-based media. Appl Environ Microbiol 65: 893897.
  • Du J, Shao ZY & Zhao HM (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38: 873890.
  • Duffaud GD, McCutchen CM, Leduc P, Parker KN & Kelly RM (1997) Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Appl Environ Microbiol 63: 169177.
  • Dumitrache A, Wolfaardt G, Allen G, Liss SN & Lynd LR (2013) Form and function of Clostridium thermocellum biofilms. Appl Environ Microbiol 79: 231239.
  • Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4: 32.
  • Durot M, Bourguignon PY & Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33: 164190.
  • Dwivedi PP, Gibbs MD, Saul DJ & Bergquist PL (1996) Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Rt8B. 4 genus Caldicellulosiruptor. Appl Microbiol Biotechnol 45: 8693.
  • Eckert K & Schneider E (2003) A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur J Biochem 270: 35933602.
  • Eckert K, Zielinski F, Leggio LL & Schneider E (2002) Gene cloning, sequencing, and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC 27009. Appl Microbiol Biotechnol 60: 428436.
  • Eckert K, Vigouroux A, Lo Leggio L & Moréra S (2009) Crystal structures of A. acidocaldarius endoglucanase Cel9A in complex with cello-oligosaccharides: strong −1 and −2 subsites mimic cellobiohydrolase activity. J Mol Biol 394: 6170.
  • Egorova K & Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8: 649655.
  • Elkins JG, Raman B & Keller M (2010a) Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr Opin Biotechnol 21: 657662.
  • Elkins JG, Lochner A, Hamilton-Brehm SD et al. (2010b) Complete genome sequence of the cellulolytic thermophile Caldicellulosiruptor obsidiansis OB47T. J Bacteriol 192: 60996100.
  • Ellis LD, Holwerda EK, Hogsett D et al. (2012) Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresour Technol 103: 293299.
  • Engelhardt H (2007) Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 160: 115124.
  • Erbeznik M, Jones CR, Dawson KA & Strobel HJ (1997) Clostridium thermocellum JW20 (ATCC 31549) is a coculture with Thermoanaerobacter ethanolicus. Appl Environ Microbiol 63: 29492951.
  • Fardeau ML, Ollivier B, Garcia JL & Patel BK (2001) Transfer of Thermobacteroides leptospartum and Clostridium thermolacticum as Clostridium stercorarium subsp. leptospartum subsp. nov., comb. nov. and C. stercorarium subsp. thermolacticum subsp. nov., comb. nov. Int J Syst Evol Microbiol 51: 11271131.
  • Feinberg L, Foden J, Barrett T et al. (2011) Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. J Bacteriol 193: 29062907.
  • Feist AM & Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26: 659667.
  • Fierobe HP, Pagès S, Bélaïch A, Champ S, Lexa D & Bélaïch JP (1999) Cellulosome from Clostridium cellulolyticum: molecular study of the dockerin/cohesin interaction. Biochemistry 38: 1282212832.
  • Fierobe H-P, Bayer EA, Tardif C et al. (2002) Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 277: 4962149630.
  • Fontes CMGA & Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79: 655681.
  • Frangos T, Bullen D, Bergquist P & Daniel R (1999) Hemicellulolytic and cellulolytic functions of the domains of a β-mannanase cloned from Caldicellulosiruptor saccharolyticus. Int J Biochem Cell Biol 31: 853859.
  • Freier D, Mothershed CP & Wiegel J (1988) Characterization of Clostridium thermocellum JW20. Appl Environ Microbiol 54: 204211.
  • Freier-Schröder D, Wiegel J & Gottschalk G (1989) Butanol formation by Clostridium thermosaccharolyticum at neutral pH. Biotechnol Lett 11: 831836.
  • Frock AD & Kelly RM (2012) Extreme thermophiles: moving beyond single-enzyme biocatalysis. Curr Opin Chem Eng 1: 363372.
  • Fu C, Xiao X, Xi Y et al. (2011a) Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. Bioenergy Res 4: 153164.
  • Fu C, Mielenz JR, Xiao X et al. (2011b) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. P Natl Acad Sci USA 108: 38033808.
  • Fuchs K-P, Zverlov VV, Velikodvorskaya GA, Lottspeich F & Schwarz WH (2003) Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-β-1,3-glucanase bound to the outer cell surface. Microbiology 149: 10211031.
  • Fujino T, Béguin P & Aubert JP (1993) Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. J Bacteriol 175: 18911899.
  • Garcia-Alvarez B, Melero R, Dias FM et al. (2011) Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome. J Mol Biol 407: 571580.
  • Garcia-Martinez DV, Shinmyo A, Madia A & Demain AL (1980) Studies on cellulase production by Clostridium thermocellum. Appl Microbiol Biotechnol 9: 189197.
  • Geddes CC, Nieves IU & Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22: 312319.
  • Gefen G, Anbar M, Morag E, Lamed R & Bayer EA (2012) Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. P Natl Acad Sci USA 109: 1029810303.
  • Georgianna DR & Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488: 329335.
  • Georgieva T, Mikkelsen M & Ahring B (2007a) High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1. Cent Eur J Biol 2: 364377.
  • Georgieva TI, Skiadas IV & Ahring BK (2007b) Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation. Biotechnol Bioeng 98: 11611170.
  • Gerngross UT, Romaniec MPM, Kobayashi T, Huskisson NS & Demain AL (1993) Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol Microbiol 8: 325334.
  • Gerwig GJ, Kamerling JP, Vliegenthart JF, Morag E, Lamed R & Bayer EA (1993) The nature of the carbohydrate-peptide linkage region in glycoproteins from the cellulosomes of Clostridium thermocellum and Bacteroides cellulosolvens. J Biol Chem 268: 2695626960.
  • Ghosh P, Pamment NB & Martin WRB (1982) Simultaneous saccharification and fermentation of cellulose: effect of β-D-glucosidase activity and ethanol inhibition of cellulases. Enzyme Microb Technol 4: 425430.
  • Gibbs MD, Saul DJ, Luthi E & Bergquist PL (1992) The beta-mannanase from “Caldocellum saccharolyticum” is part of a multidomain enzyme. Appl Environ Microbiol 58: 38643867.
  • Gibbs MD, Reeves RA & Bergquist PL (1995) Cloning, sequencing, and expression of a xylanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1 and activity of the enzyme on fiber-bound substrate. Appl Environ Microbiol 61: 44034408.
  • Gibbs MD, Elinder AU, Reeves RA & Bergquist PL (1996) Sequencing, cloning and expression of a beta-1,4-mannanase gene, manA, from the extremely thermophilic anaerobic bacterium, Caldicellulosiruptor Rt8B.4. FEMS Microbiol Lett 141: 3743.
  • Gibbs MD, Reeves RA, Sunna A & Bergquist PL (1999) Sequencing and expression of a beta-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr Microbiol 39: 3510357.
  • Gibbs MD, Reeves RA, Farrington GK, Anderson P, Williams DP & Bergquist PL (2000) Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1. Curr Microbiol 40: 333340.
  • Gibson DG, Glass JI, Lartigue C et al. (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329: 5256.
  • Gilad R, Rabinovich L, Yaron S, Bayer EA, Lamed R, Gilbert HJ & Shoham Y (2003) CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J Bacteriol 185: 391398.
  • Gilbert HJ (2007) Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 63: 15681576.
  • Gold ND & Martin VJ (2007) Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 189: 67876795.
  • Gowen CM & Fong SS (2010) Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum. Biotechnol J 5: 759767.
  • Graham JE, Clark ME, Nadler DC et al. (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2: 375
  • Green EM (2011) Fermentative production of butanol – the industrial perspective. Curr Opin Biotechnol 22: 337343.
  • Green E, Jenkinson E & Crow M (2011) Production of butanol. US Patent No. US2011/0097775 A1.
  • Grous WR, Converse AO & Grethlein HE (1986) Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb Technol 8: 274280.
  • Guimaraes BG, Souchon H, Lytle BL, David Wu JH & Alzari PM (2002) The crystal structure and catalytic mechanism of cellobiohydrolase CelS, the major enzymatic component of the Clostridium thermocellum cellulosome. J Mol Biol 320: 587596.
  • Guss AM, Olson DG, Caiazza NC & Lynd LR (2012) Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum. Biotechnol Biofuels 5: 30.
  • Hack CJ (2004) Integrated transcriptome and proteome data: the challenges ahead. Brief Funct Genomic Proteomic 3: 212219.
  • Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Shoham Y, Lamed R & Bayer EA (2008) Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8: 968979.
  • Hall J, Hazlewood GP, Barker PJ & Gilbert HJ (1988) Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69: 2938.
  • Halldórsdóttir S, Thórólfsdóttir ET, Spilliaert R et al. (1998) Cloning, sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosyl hydrolase family 12. Appl Microbiol Biotechnol 49: 277284.
  • Halstead JR, Vercoe PE, Gilbert HJ, Davidson K & Hazlewood GP (1999) A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology 145(Pt 11): 31013108.
  • Hamelinck CN, Hooijdonk GV & Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28: 384410.
  • Hamilton-Brehm SD, Mosher JJ, Vishnivetskaya T et al. (2010) Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl Environ Microbiol 76: 10141020.
  • Hammel M, Fierobe H-P, Czjzek M, Finet S & Receveur-Bréchot V (2004) Structural insights into the mechanism of formation of cellulosomes probed by small angle X-ray scattering. J Biol Chem 279: 5598555994.
  • Hammel M, Fierobe H-P, Czjzek M et al. (2005) Structural basis of cellulosome efficiency explored by small angle X-ray scattering. J Biol Chem 280: 3856238568.
  • Handelsman T, Barak Y, Nakar D, Mechaly A, Lamed R, Shoham Y & Bayer EA (2004) Cohesin-dockerin interaction in cellulosome assembly: a single Asp-to-Asn mutation disrupts high-affinity cohesin-dockerin binding. FEBS Lett 572: 195200.
  • Hardiman E, Gibbs M, Reeves R & Bergquist P (2010) Directed evolution of a thermophilic beta-glucosidase for cellulosic bioethanol production. Appl Biochem Biotechnol 161: 301312.
  • Hauser LJ, Land ML, Brown SD et al. (2011) The complete genome sequence and updated annotation of Desulfovibrio alaskensis G20. J Bacteriol 193: 42684269.
  • Hayashi H, Takagi KI, Fukumura M, Kimura T, Karita S, Sakka K & Ohmiya K (1997) Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J Bacteriol 179: 42464253.
  • Hayashi H, Takehara M, Hattori T, Kimura T, Karita S, Sakka K & Ohmiya K (1999) Nucleotide sequences of two contiguous and highly homologous xylanase genes xynA and xynB and characterization of XynA from Clostridium thermocellum. Appl Microbiol Biotechnol 51: 348357.
  • Hazlewood GP, Davidson K, Laurie JI, Huskisson NS & Gilbert HJ (1993) Gene sequence and properties of Cell, a family E endoglucanase from Clostridium thermocellum. J Gen Microbiol 139: 307316.
  • He Q, Hemme CL, Jiang H, He Z & Zhou J (2011) Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. Bioresour Technol 102: 95869592.
  • Heap JT, Pennington OJ, Cartman ST, Carter GP & Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70: 452464.
  • Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC & Minton NP (2010) The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80: 4955.
  • Heap JT, Ehsaan M, Cooksley CM, Ng Y-K, Cartman ST, Winzer K & Minton NP (2012) Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 40: e59.
  • Hedge MK, Gehring AM, Adkins CT, Weston LA, Lavis LD & Johnson RJ (2012) The structural basis for the narrow substrate specificity of an acetyl esterase from Thermotoga maritima. Biochim Biophys Acta 1824: 10241030.
  • Hemme CL, Mouttaki H, Lee Y-J et al. (2010) Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production. J Bacteriol 192: 64946496.
  • Hemme CL, Fields MW, He Q et al. (2011) Correlation of genomic and physiological traits of Thermoanaerobacter species with biofuel yields. Appl Environ Microbiol 77: 79988008.
  • Herbers K, Wilke I & Sonnewald U (1995) A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Nat Biotechnol 13: 6366.
  • Herrero AA & Gomez RF (1980) Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol 40: 571577.
  • Hess M, Sczyrba A, Egan R et al. (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331: 463467.
  • Hilge M, Gloor SM, Rypniewski W et al. (1998) High-resolution native and complex structures of thermostable β-mannanase from Thermomonospora fusca – substrate specificity in glycosyl hydrolase family 5. Structure 6: 14331444.
  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW & Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804807.
  • Himmel ME, Xu Q, Luo Y, Ding S-Y, Lamed R & Bayer EA (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1: 323341.
  • Holwerda EK, Hirst KD & Lynd LR (2012) A defined growth medium with very low background carbon for culturing Clostridium thermocellum. J Ind Microbiol Biotechnol 39: 943947.
  • Hong MR, Park CS & Oh DK (2009a) Characterization of a thermostable endo-1,5-alpha-L-arabinanase from Caldicellulorsiruptor saccharolyticus. Biotechnol Lett 31: 14391443.
  • Hong MR, Kim YS, Park CS, Lee JK, Kim YS & Oh DK (2009b) Characterization of a recombinant beta-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. J Biosci Bioeng 108: 3640.
  • Hong M-E, Lee K-S, Yu BJ et al. (2010) Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. J Biotechnol 149: 5259.
  • Hoppert M, Valdez M, Enseleit M et al. (2012) Structure–functional analysis of the Dictyoglomus cell envelope. Syst Appl Microbiol 35: 279290.
  • Hu W-J, Harding SA, Lung J et al. (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17: 808812.
  • Huang CY, Patel BK, Mah RA & Baresi L (1998) Caldicellulosiruptor owensensis sp. nov., an anaerobic, extremely thermophilic, xylanolytic bacterium. Int J Syst Bacteriol 48: 9197.
  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW & Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 8: 119.
  • Ichinose H, Kuno A, Kotake T et al. (2006) Characterization of an exo-β-1,3-galactanase from Clostridium thermocellum. Appl Environ Microbiol 72: 35153523.
  • Ingram LO (1990) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9: 305319.
  • Irwin DC, Spezio M, Walker LP & Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42: 10021013.
  • Irwin D, Jung ED & Wilson DB (1994) Characterization and sequence of a Thermomonospora fusca xylanase. Appl Environ Microbiol 60: 763770.
  • Irwin DC, Zhang S & Wilson DB (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267: 49884997.
  • Irwin DC, Cheng M, Xiang B, Rose JKC & Wilson DB (2003) Cloning, expression and characterization of a family-74 xyloglucanase from Thermobifida fusca. Eur J Biochem 270: 30833091.
  • Izquierdo JA, Goodwin L, Davenport KW et al. (2012) Complete genome sequence of Clostridium clariflavum DSM 19732. Stand Genomic Sci 6: 104115.
  • Jensen LG, Olsen O, Kops O, Wolf N, Thomsen KK & Wettstein DV (1996) Transgenic barley expressing a protein-engineered, thermostable (1,3-1,4)-β-glucanase during germination. P Natl Acad Sci USA 93: 34873491.
  • Jindou S, Soda A, Karita S et al. (2004) Cohesin-dockerin interactions within and between Clostridium josui and Clostridium thermocellum. J Biol Chem 279: 98679874.
  • Joliff G, Beguin P & Aubert JP (1986) Nucleotide sequence of the cellulase gene celD encoding endoglucanase D of Clostridium thermocellum. Nucleic Acids Res 14: 86058613.
  • Jung ED, Lao G, Irwin D, Barr BK, Benjamin A & Wilson DB (1993) DNA sequences and expression in Streptomyces lividans of an exoglucanase gene and an endoglucanase gene from Thermomonospora fusca. Appl Environ Microbiol 59: 30323043.
  • Juy M, Amrt AG, Alzari PM, Poljak RJ, Claeyssens M, Beguin P & Aubert J-P (1992) Three-dimensional structure of a thermostable bacterial cellulase. Nature 357: 8991.
  • Kádár Z, De Vrije T, Budde M, Szengyel Z, Réczey K & Claassen P (2003) Hydrogen production from paper sludge hydrolysate. Appl Biochem Biotechnol 107: 557566.
  • Kádár Z, de Vrije T, van Noorden G, Budde M, Szengyel Z, Réczey K & Claassen P (2004) Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 114: 497508.
  • Kahel-Raifer H, Jindou S, Bahari L et al. (2010) The unique set of putative membrane-associated anti-sigma factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation. FEMS Microbiol Lett 308: 8493.
  • Kamezaki Y, Enomoto C, Ishikawa Y, Koyama T, Naya S-I, Suzuki T & Sakka K (2010) The Dock tag, an affinity tool for the purification of recombinant proteins, based on the interaction between dockerin and cohesin domains from Clostridium josui cellulosome. Protein Expr Purif 70: 2331.
  • Kanehisa M, Goto S, Sato Y, Furumichi M & Tanabe M (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: D109D114.
  • Kang S, Barak Y, Lamed R, Bayer EA & Morrison M (2006) The functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitors. Mol Microbiol 60: 13441354.
  • Karlsson EN, Hachem MA, Ramchuran S, Costa H, Holst O, Svenningsen ÅF & Hreggvidsson GO (2004) The modular xylanase Xyn10A from Rhodothermus marinus is cell-attached, and its C-terminal domain has several putative homologues among cell-attached proteins within the phylum Bacteroidetes. FEMS Microbiol Lett 241: 233242.
  • Kataeva I, Guglielmi G & Béguin P (1997) Interaction between Clostridium thermocellum endoglucanase CelD and polypeptides derived from the cellulosome-integrating protein CipA: stoichiometry and cellulolytic activity of the complexes. Biochem J 326: 617624.
  • Kataeva IA, Seidel RD III, Li XL & Ljungdahl LG (2001) Properties and mutation analysis of the CelK cellulose-binding domain from the Clostridium thermocellum cellulosome. J Bacteriol 183: 15521559.
  • Kataeva I, Uversky V, Brewer J, Schubot F, Rose J, Wang B-C & Ljungdahl L (2004) Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Protein Eng Des Sel 17: 759769.
  • Kataeva IA, Brewer JM, Uversky VN & Ljungdahl LG (2005) Domain coupling in a multimodular cellobiohydrolase CbhA from Clostridium thermocellum. FEBS Lett 579: 43674373.
  • Kataeva IA, Yang SJ, Dam P et al. (2009) Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium “Anaerocellum thermophilum” DSM 6725. J Bacteriol 191: 37603761.
  • Kataeva I, Foston MB, Yang S-J et al. (2013) Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ Sci 6: 21862195.
  • Kato S, Haruta S, Cui ZJ, Ishii M, Yokota A & Igarashi Y (2004) Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol 54: 20432047.
  • Kesavulu MM, Tsai JY, Lee HL, Liang PH & Hsiao CD (2012) Structure of the catalytic domain of the Clostridium thermocellum cellulase CelT. Acta Crystallogr D Biol Crystallogr 68: 310320.
  • Kim JH, Irwin D & Wilson DB (2004) Purification and characterization of Thermobifida fusca xylanase 10B. Can J Microbiol 50: 835843.
  • Kim S, Lee D-S, Choi I, Ahn S-J, Kim Y-H & Bae H-J (2010) Arabidopsis thaliana Rubisco small subunit transit peptide increases the accumulation of Thermotoga maritima endoglucanase Cel5A in chloroplasts of transgenic tobacco plants. Transgenic Res 19: 489497.
  • Kim J, Kavas M, Fouad W, Nong G, Preston J & Altpeter F (2011a) Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production. Plant Mol Biol 76: 357369.
  • Kim Y-S, Yeom S-J & Oh D-K (2011b) Characterization of a GH3 family β-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds. J Agric Food Chem 59: 1181211818.
  • Kim TY, Sohn SB, Bin Kim Y, Kim WJ & Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23: 617623.
  • Kitago Y, Karita S, Watanabe N, Kamiya M, Aizawa T, Sakka K & Tanaka I (2007) Crystal structure of Cel44A, a glycoside hydrolase family 44 endoglucanase from Clostridium thermocellum. J Biol Chem 282: 3570335711.
  • Klapatch T, Demain A & Lynd L (1996) Restriction endonuclease activity in Clostridium thermocellum and Clostridium thermosaccharolyticum. Appl Microbiol Biotechnol 45: 127131.
  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA & Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109: 10831087.
  • Klinke H, Thomsen A & Ahring B (2001) Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 57: 631638.
  • Klinke HB, Thomsen AB & Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66: 1026.
  • Kluskens LD, van Alebeek G-JWM, Voragen AGJ, de Vos WM & van der Oost J (2003) Molecular and biochemical characterization of the thermoactive family 1 pectate lyase from the hyperthermophilic bacterium Thermotoga maritima. Biochem J 370: 651659.
  • Kluskens LD, van Alebeek G-JWM, Walther J, Voragen AGJ, de Vos WM & van der Oost J (2005) Characterization and mode of action of an exopolygalacturonase from the hyperthermophilic bacterium Thermotoga maritima. FEBS J 272: 54645473.
  • Kostylev M & Wilson DB (2011) Determination of the catalytic base in family 48 glycosyl hydrolases. Appl Environ Microbiol 77: 62746276.
  • Krauss J, Zverlov VV & Schwarz WH (2012) In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose. Appl Environ Microbiol 78: 43014307.
  • Kruus K, Wang WK, Ching J & Wu JH (1995) Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol 177: 16411644.
  • Kublanov IV, Perevalova AA, Slobodkina GB et al. (2009) Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia). Appl Environ Microbiol 75: 286291.
  • Kumar P, Barrett DM, Delwiche MJ & Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48: 37133729.
  • Kumar A, Suthers PF & Maranas CD (2012) MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinformatics 13: 6.
  • Kurokawa J, Hemjinda E, Arai T, Kimura T, Sakka K & Ohmiya K (2002) Clostridium thermocellum cellulase CelT, a family 9 endoglucanase without an Ig-like domain or family 3c carbohydrate-binding module. Appl Microbiol Biotechnol 59: 455461.
  • la Grange D, den Haan R & van Zyl W (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87: 11951208.
  • Lacis LS & Lawford HG (1991) Thermoanaerobacter ethanolicus growth and product yield from elevated levels of xylose or glucose in continuous cultures. Appl Environ Microbiol 57: 579585.
  • Lamed R & Zeikus JG (1980) Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 144: 569578.
  • Lamed R, Setter E & Bayer EA (1983a) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156: 828836.
  • Lamed R, Setter E, Kenig R & Bayer EA (1983b) The cellulosome – a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 13: 163181.
  • Lamed R, Kenig R, Morgenstern E, Calzada J, De Micheo F & Bayer E (1991) Efficient cellulose solubilization by a combined cellulosome-β-glucosidase system. Appl Biochem Biotechnol 27: 173183.
  • Lao G, Ghangas GS, Jung ED & Wilson DB (1991) DNA sequences of three β-1,4-endoglucanase genes from Thermomonospora fusca. J Bacteriol 173: 33973407.
  • Larkum AWD, Ross IL, Kruse O & Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30: 198205.
  • Larsen L, Nielsen P & Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168: 114119.
  • Lee SK, Chou H, Ham TS, Lee TS & Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19: 556563.
  • Lee JW, Kim TY, Jang YS, Choi S & Lee SY (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29: 370378.
  • Leibovitz E & Béguin P (1996) A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J Bacteriol 178: 30773084.
  • Leibovitz E, Ohayon H, Gounon P & Béguin P (1997) Characterization and subcellular localization of the Clostridium thermocellum scaffoldin dockerin binding protein SdbA. J Bacteriol 179: 25192523.
  • Lemaire M & Beguin P (1993) Nucleotide sequence of the celG gene of Clostridium thermocellum and characterization of its product, endoglucanase CelG. J Bacteriol 175: 33533360.
  • Lemaire M, Ohayon H, Gounon P, Fujino T & Béguin P (1995) OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J Bacteriol 177: 24512459.
  • Levisson M, Han GW, Deller MC et al. (2012) Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima. Proteins 80: 15451559.
  • Lewis NE, Nagarajan H & Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10: 291305.
  • Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J & Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. P Natl Acad Sci USA 100: 49394944.
  • Liebl W, Ruile P, Bronnenmeier K, Riedel K, Lottspeich F & Greif I (1996) Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and CelB, and characterization of the recombinant enzymes. Microbiology 142: 25332542.
  • Liebl W, Wagner B & Schellhase J (1998) Properties of an alpha-galactosidase, and structure of its gene galA, within an alpha-and beta-galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritima. Syst Appl Microbiol 21: 111.
  • Liebl W, Winterhalter C, Baumeister W, Armbrecht M & Valdez M (2008) Xylanase attachment to the cell wall of the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 190: 13501358.
  • Lim YR, Yoon RY, Seo ES, Kim YS, Park CS & Oh DK (2010) Hydrolytic properties of a thermostable α-l-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. J Appl Microbiol 109: 11881197.
  • Lin S-B & Stutzenberger FJ (1995) Purification and characterization of the major β-1,4-endoglucanase from Thermomonospora curvata. J Appl Microbiol 79: 447453.
  • Linger JG, Adney WS & Darzins A (2010) Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol 76: 63606369.
  • Liolios K, Sikorski J, Jando M et al. (2010) Complete genome sequence of Thermobispora bispora type strain (R51T). Stand Genomic Sci 2: 318326.
  • Liu Z (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73: 2736.
  • Liu Y-S, Zeng Y, Luo Y, Xu Q, Himmel M, Smith S & Ding S-Y (2009) Does the cellulose-binding module move on the cellulose surface? Cellulose 16: 587597.
  • Liu J, Wang X & Xu D (2010) QM/MM study on the catalytic mechanism of cellulose hydrolysis catalyzed by cellulase Cel5A from Acidothermus cellulolyticus. J Phys Chem B 114: 14621470.
  • Ljungdahl LG & Wiegel JKW (1981) Anaerobic thermophilic culture system. US Patent No. 4,292,406.
  • Lochner A, Giannone RJ, Keller M, Antranikian G, Graham DE & Hettich RL (2011a) Label-free quantitative proteomics for the extremely thermophilic bacterium Caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass. J Proteome Res 10: 53025314.
  • Lochner A, Giannone RJ, Rodriguez M et al. (2011b) Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl Environ Microbiol 77: 40424054.
  • Love DR, Fisher R & Bergquist PL (1988) Sequence structure and expression of a cloned beta-glucosidase gene from an extreme thermophile. Mol Gen Genet 213: 8492.
  • Lu Y, Zhang YH & Lynd LR (2006) Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. P Natl Acad Sci USA 103: 1616516169.
  • Lu TK, Khalil AS & Collins JJ (2009) Next-generation synthetic gene networks. Nat Biotechnol 27: 11391150.
  • Lüthi E, Jasmat NB & Bergquist PL (1990) Xylanase from the extremely thermophilic bacterium “Caldocellum saccharolyticum”: overexpression of the gene in Escherichia coli and characterization of the gene product. Appl Environ Microbiol 56: 26772683.
  • Lüthi E, Jasmat NB, Grayling RA, Love DR & Bergquist PL (1991) Cloning, sequence analysis, and expression in Escherichia coli of a gene coding for a beta-mannanase from the extremely thermophilic bacterium “Caldocellum saccharolyticum. Appl Environ Microbiol 57: 694700.
  • Lutke-Eversloh T & Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22: 634647.
  • Lykidis A, Mavromatis K, Ivanova N et al. (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189: 24772486.
  • Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21: 403465.
  • Lynd LR, Baskaran S & Casten S (2001) Salt accumulation resulting from base added for pH Control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Biotechnol Prog 17: 118125.
  • Lynd LR, Weimer PJ, van Zyl WH & Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66: 506577.
  • Lynd LR, Zyl WHv, McBride JE & Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16: 577583.
  • Lynd LR, Laser MS, Bransby D et al. (2008) How biotech can transform biofuels. Nat Biotechnol 26: 169172.
  • Lytle B, Volkman B, Westler W & Wu J (2000) Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. Arch Biochem Biophys 379: 237244.
  • Mahadevan SA, Wi SG, Lee D-S & Bae H-J (2008) Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett 287: 205211.
  • Mahadevan S, Wi S, Kim Y, Lee K & Bae H-J (2011) In planta differential targeting analysis of Thermotoga maritima Cel5A and CBM6-engineered Cel5A for autohydrolysis. Transgenic Res 20: 877886.
  • Maki M, Leung KT & Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5: 500516.
  • Mansfield SD, Kang K-Y & Chapple C (2012) Designed for deconstruction – poplar trees altered in cell wall lignification improve the efficacy of bioethanol production. New Phytol 194: 91101.
  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R & Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20: 372380.
  • Martinez D, Berka RM, Henrissat B et al. (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26: 553560.
  • Martinez-Fleites C, Guerreiro CIPD, Baumann MJ et al. (2006) Crystal structures of Clostridium thermocellum xyloglucanase, XGH74A, reveal the structural basis for xyloglucan recognition and degradation. J Biol Chem 281: 2492224933.
  • Mathrani IM & Ahring BK (1992) Thermophilic and alkalophilic xylanases from several Dictyoglomus isolates. Appl Microbiol Biotechnol 38: 2327.
  • McBee RH (1954) The characteristics of Clostridium thermocellum. J Bacteriol 67: 505506.
  • McCarter S, Adney W, Vinzant T et al. (2002) Exploration of cellulose surface-binding properties of Acidothermus cellulolyticus Cel5A by site-specific mutagenesis. Appl Biochem Biotechnol 98–100: 273287.
  • McCarthy AA, Morris DD, Bergquist PL & Baker EN (2000) Structure of XynB, a highly thermostable β-1,4-xylanase from Dictyoglomus thermophilum Rt46B.1, at 1.8Å resolution. Acta Crystallogr D Biol Crystallogr 56: 13671375.
  • McGrath CE & Wilson DB (2006) Characterization of a Thermobifida fusca β-1,3-Glucanase (Lam81A) with a potential role in plant biomass degradation. Biochemistry 45: 1409414100.
  • Mearls EB, Izquierdo JA & Lynd LR (2012) Formation and characterization of non-growth states in Clostridium thermocellum: spores and L-forms. BMC Microbiol 12: 180.
  • Mechaly A, Yaron S, Lamed R et al. (2000) Cohesin-dockerin recognition in cellulosome assembly: experiment versus hypothesis. Proteins 39: 170177.
  • Mikkelsen MJ & Ahring BK (2007) Thermoanaerobacter mathranii strain BG1. WIPO publication no. WO/2007/134607.
  • Mills TY, Sandoval NR & Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2: 26.
  • Mingardon F, Chanal A, Tardif C, Bayer EA & Fierobe HP (2007) Exploration of new geometries in cellulosome-like chimeras. Appl Environ Microbiol 73: 71387149.
  • Miras I, Schaeffer F, Beguin P & Alzari PM (2002) Mapping by site-directed mutagenesis of the region responsible for cohesin-dockerin interaction on the surface of the seventh cohesin domain of Clostridium thermocellum CipA. Biochemistry 41: 21152119.
  • Miroshnichenko ML, Kublanov IV, Kostrikina NA, Tourova TP, Kolganova TV, Birkeland NK & Bonch-Osmolovskaya EA (2008) Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int J Syst Evol Microbiol 58: 14921496.
  • Miyake K, Machida Y, Hattori K & Iijima S (1998) Characterization of a multidomain cellulase from an extremely thermophilic anaerobe strain NA10. J Ferment Bioeng 85: 289296.
  • Miyazaki K (2005) Hyperthermophilic α-L-arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9: 399406.
  • Mizutani K, Fernandes VO, Karita S et al. (2012) Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase. Appl Environ Microbiol 78: 47814787.
  • Mladenovska Z & Dabrowski S (2010) Thermophilic fermentative bacterium producing butanol and/or hydrogen from glycerol. WIPO publication no. WO/2010/031793.
  • Mladenovska Z, Mathrani IM & Ahring BK (1995) Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium. Arch Microbiol 163: 223230.
  • Mohagheghi A, Grohmann K, Himmel M, Leighton L & Updegraff DM (1986) Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int J Syst Bacteriol 36: 435443.
  • Mohr G, Hong W, Zhang J et al. (2013) A targetron system for gene targeting in thermophiles and its application in Clostridium thermocellum. PLoS ONE 8: e69032.
  • Montanier C, Money VA, Pires VMR et al. (2009) The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. PLoS Biol 7: e1000071.
  • Moore JB, Markiewicz P & Miller JH (1994) Identification and sequencing of the Thermotoga maritima lacZ gene, part of a divergently transcribed operon. Gene 147: 101106.
  • Morag E, Lapidot A, Govorko D, Lamed R, Wilchek M, Bayer EA & Shoham Y (1995) Expression, purification, and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl Environ Microbiol 61: 19801986.
  • Moraïs S, Salama-Alber O, Barak Y et al. (2012) Functional association of catalytic and ancillary modules dictates enzymatic activity in glycoside hydrolase family 43 β-xylosidase. J Biol Chem 287: 92139221.
  • Mori Y (1990) Isolation of mutants of Clostridium thermocellum with enhanced cellulase production. Agric Biol Chem 54: 825826.
  • Morris DD, Reeves RA, Gibbs MD, Saul DJ & Bergquist PL (1995) Correction of the beta-mannanase domain of the celC pseudogene from Caldicellulosiruptor saccharolyticus and activity of the gene product on kraft pulp. Appl Environ Microbiol 61: 22622269.
  • Morris DD, Gibbs MD, Chin CW et al. (1998) Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl Environ Microbiol 64: 17591765.
  • Morris DD, Gibbs MD, Ford M, Thomas J & Bergquist PL (1999) Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles 3: 103111.
  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M & Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96: 673686.
  • Nakajima M, Imamura H, Shoun H & Wakagi T (2003) Unique metal dependency of cytosolic α-mannosidase from Thermotoga maritima, a hyperthermophilic bacterium. Arch Biochem Biophys 415: 8793.
  • Nakayama S, Kiyoshi K, Kadokura T & Nakazato A (2011) Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1–4. Appl Environ Microbiol 77: 64706475.
  • Nataf Y, Yaron S, Stahl F et al. (2009) Cellodextrin and laminaribiose ABC transporters in Clostridium thermocellum. J Bacteriol 191: 203209.
  • Nataf Y, Bahari L, Kahel-Raifer H et al. (2010) Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. P Natl Acad Sci USA 107: 1864618651.
  • Navarro A, Chebrou MC, Beguin P & Aubert JP (1991) Nucleotide sequence of the cellulase gene celF of Clostridium thermocellum. Res Microbiol 142: 927936.
  • Nelson KE, Clayton RA, Gill SR et al. (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399: 323329.
  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72: 379412.
  • Newcomb M, Chen CY & Wu JH (2007) Induction of the celC operon of Clostridium thermocellum by laminaribiose. P Natl Acad Sci USA 104: 37473752.
  • Newcomb M, Millen J, Chen CY & Wu JH (2011) Co-transcription of the celC gene cluster in Clostridium thermocellum. Appl Microbiol Biotechnol 90: 625634.
  • Ng TK, Weimer TK & Zeikus JG (1977) Cellulolytic and physiological properties of Clostridium thermocellum. Arch Microbiol 114: 17.
  • Ng TK, Ben-Bassat A & Zeikus JG (1981) Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl Environ Microbiol 41: 13371343.
  • Ng IS, Li C-W, Yeh Y-F et al. (2009) A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13: 425435.
  • Nielsen P, Mathrani IM & Ahring BK (1993) Thermoanaerobium acetigenum spec. nov., a new anaerobic, extremely thermophilic, xylanolytic non-spore-forming bacterium isolated from an Icelandic hot spring. Arch Microbiol 159: 460464.
  • Nishida H, Beppu T & Ueda K (2011) Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae. Genomics 98: 370375.
  • Nolan M, Tindall BJ, Pomrenke H et al. (2009) Complete genome sequence of Rhodothermus marinus type strain (R-10T). Stand Genomic Sci 1: 283290.
  • Olson DG & Lynd LR (2012a) Computational design and characterization of a temperature-sensitive plasmid replicon for gram positive thermophiles. J Biol Eng 6: 5.
  • Olson DG & Lynd LR (2012b) Transformation of Clostridium Thermocellum by electroporation. Methods in Enzymology, Vol. 510 (Gilbert HJ, ed.), pp. 317330. Academic Press, Waltham, MA.
  • Olson DG, Tripathi SA, Giannone RJ et al. (2010) Deletion of the Cel48S cellulase from Clostridium thermocellum. P Natl Acad Sci USA 107: 1772717732.
  • Olson DG, McBride JE, Joe Shaw A & Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23: 396405.
  • Onyenwoke RU (2006) Reclassification of Thermoanaerobium acetigenum as Caldicellulosiruptor acetigenus comb. nov. and emendation of the genus description. Int J Syst Evol Microbiol 56: 13911395.
  • Onyenwoke RU & Wiegel J (2009) Thermoanaerobacter. Bergey's Manual of Systematic Bacteriology, Vol. 3 (Vos P, Garrity G & Jones D et al., eds), pp. 12251239. Springer Verlag, New York, Heidelberg.
  • Orth JD & Palsson BO (2010) Systematizing the generation of missing metabolic knowledge. Biotechnol Bioeng 107: 403412.
  • Ou MS, Mohammed N, Ingram LO & Shanmugam KT (2009) Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl Biochem Biotechnol 155: 7682.
  • Ozdemir I, Blumer-Schuette SE & Kelly RM (2012) S-layer homology domain proteins Csac_0678 and Csac_2722 are implicated in plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol 78: 768777.
  • Pagès S, Bélaïch A, Bélaïch J-P, Morag E, Lamed R, Shoham Y & Bayer E (1997) Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29: 517527.
  • Parisot J, Langlois V, Sakanyan V & Rabiller C (2003) Cloning expression and characterization of a thermostable exopolygalacturonase from Thermotoga maritima. Carbohydr Res 338: 13331337.
  • Park AR & Oh DK (2010) Effects of galactose and glucose on the hydrolysis reaction of a thermostable β-galactosidase from Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 85: 14271435.
  • Park JH, Lee SY, Kim TY & Kim HU (2008) Application of systems biology for bioprocess development. Trends Biotechnol 26: 404412.
  • Park JI, Kent MS, Datta S et al. (2011) Enzymatic hydrolysis of cellulose by the cellobiohydrolase domain of CelB from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus. Bioresour Technol 102: 59885994.
  • Parker KN, Chhabra S, Lam D, Snead MA, Mathur EJ & Kelly RM (2001a) β-Mannosidase from Thermotoga species. Methods in Enzymology, Vol. 330 (Adams MWW & Kelly RM, eds), pp. 238246. Academic Press, Waltham, MA.
  • Parker KN, Chhabra SR, Lam D et al. (2001b) Galactomannanases Man2 and Man5 from Thermotoga species: growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnol Bioeng 75: 322333.
  • Pasotti L, Politi N, Zucca S, Cusella De Angelis MG & Magni P (2012) Bottom-up engineering of biological systems through standard bricks: a modularity study on basic parts and devices. PLoS ONE 7: e39407.
  • Patel BKC (2010) Phylum XX. Dictyoglomi phyl. nov. Bergey's Manual of Systematic Bacteriology, Vol. 4: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes (Krieg NR, Staley JT & Brown DR et al., eds), pp. 775780. Springer, New York.
  • Patel BK, Morgan HW, Wiegel J & Daniel RM (1987) Isolation of an extremely thermophilic chemoorganotrophic anaerobe similar to Dictyoglomus thermophilum from New Zealand hot springs. Arch Microbiol 147: 2124.
  • Peer A, Smith SP, Bayer EA, Lamed R & Borovok I (2009) Noncellulosomal cohesin- and dockerin-like modules in the three domains of life. FEMS Microbiol Lett 291: 116.
  • Pereira JH, Sapra R, Volponi JV, Kozina CL, Simmons B & Adams PD (2009) Structure of endoglucanase Cel9A from the thermoacidophilic Alicyclobacillus acidocaldarius. Acta Crystallogr D Biol Crystallogr 65: 744750.
  • Pienkos PT & Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16: 743762.
  • Pinheiro BA, Gilbert HJ, Sakka K et al. (2009) Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum. Biochem J 424: 375384.
  • Podkaminer KK, Shao X, Hogsett DA & Lynd LR (2011) Enzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50 °C with Thermoanaerobacterium saccharolyticum ALK2. Biotechnol Bioeng 108: 12681278.
  • Poehlein A, Zverlov VV, Daniel R, Schwarz WH & Liebl W (2013) Complete genome sequence of Clostridium stercorarium subsp. stercorarium strain DSM 8532, a thermophilic degrader of plant cell wall fibers. Genome Announc 1: e0007313.
  • Politz O, Krah M, Thomsen KK & Borriss R (2000) A highly thermostable endo-(1,4)-β-mannanase from the marine bacterium Rhodothermus marinus. Appl Microbiol Biotechnol 53: 715721.
  • Posta K, Béki E, Wilson DB, Kukolya J & Hornok L (2004) Cloning, characterization and phylogenetic relationships of cel5B, a new endoglucanase encoding gene from Thermobifida fusca. J Basic Microbiol 44: 383399.
  • Price ND, Reed JL & Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2: 886897.
  • Rainey FA, Janssen PH, Wild DJC & Morgan HW (1991) Isolation and characterization of an obligately anaerobic, polysaccharolytic, extremely thermophilic member of the genus Spirochaeta. Arch Microbiol 155: 396401.
  • Rainey FA, Donnison AM, Janssen PH et al. (1994) Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120: 263266.
  • Raman B, Pan C, Hurst GB et al. (2009) Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 4: e5271.
  • Raman B, McKeown CK, Rodriguez M Jr, Brown SD & Mielenz JR (2011) Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol 11: 134.
  • Rani KS, Swamy MV, Sunitha D, Haritha D & Seenayya G (1996) Improved ethanol tolerance and production in strains of Clostridium thermocellum. World J Microbiol Biotechnol 12: 5760.
  • Rastogi G, Muppidi G, Gurram R et al. (2009) Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J Ind Microbiol Biotechnol 36: 585598.
  • Reynolds PHS, Sissons CH, Daniel RM & Morgan HW (1986) Comparison of cellulolytic activities in Clostridium thermocellum and three thermophilic, cellulolytic anaerobes. Appl Environ Microbiol 51: 1217.
  • Riederer A, Takasuka TE, Makino S, Stevenson DM, Bukhman YV, Elsen NL & Fox BG (2011) Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Appl Environ Microbiol 77: 12431253.
  • Rincon MT, Dassa B, Flint HJ et al. (2010) Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS ONE 5: e12476.
  • Roberts SB, Gowen CM, Brooks JP & Fong SS (2010) Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst Biol 4: 31
  • Ruile P, Winterhalter C & Liebl W (1997) Isolation and analysis of a gene encoding α-glucuronidase, an enzyme with a novel primary structure involved in the breakdown of xylan. Mol Microbiol 23: 267279.
  • Rydzak T, Levin DB, Cicek N & Sparling R (2009) Growth phase-dependant enzyme profile of pyruvate catabolism and end-product formation in Clostridium thermocellum ATCC 27405. J Biotechnol 140: 169175.
  • Rydzak T, Levin DB, Cicek N & Sparling R (2011) End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405. Appl Microbiol Biotechnol 92: 199209.
  • Rydzak T, McQueen PD, Krokhin OV et al. (2012) Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. BMC Microbiol 12: 214.
  • Saddler JN & Chan MKH (1984) Conversion of pretreated lignocellulosic substrates to ethanol by Clostridium thermocellum in mono- and co-culture with Clostridium thermosaccharolyticum and Clostridium thermohydrosulphuricum. Can J Microbiol 30: 212220.
  • Saiki T, Kobayashi Y, Kawagoe K & Beppu T (1985) Dictyoglomus thermophilum gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 35: 253259.
  • Sakka K, Kishino Y, Sugihara Y et al. (2009) Unusual binding properties of the dockerin module of Clostridium thermocellum endoglucanase CelJ (Cel9D-Cel44A). FEMS Microbiol Lett 300: 249255.
  • Sakon J, Adney WS, Himmel ME, Thomas SR & Karplus PA (1996) Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35: 1064810660.
  • Sakon J, Irwin D, Wilson DB & Karplus PA (1997) Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol 4: 810818.
  • Salamitou S, Tokatlidis K, Béguin P & Aubert J-P (1992) Involvement of separate domains of the cellulosomal protein S1 of Clostridium thermocellum in binding to cellulose and in anchoring of catalytic subunits to the cellulosome. FEBS Lett 304: 8992.
  • Salamitou S, Lemaire M, Fujino T, Ohayon H, Gounon P, Beguin P & Aubert JP (1994) Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome. J Bacteriol 176: 28282834.
  • Santa-Maria MC, Chou C-J, Yencho GC, Haigler CH, Thompson WF, Kelly RM & Sosinski B (2009) Plant cell calcium-rich environment enhances thermostability of recombinantly produced α-amylase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnol Bioeng 104: 947956.
  • Santa-Maria MC, Yencho CG, Haigler CH, Thompson WF, Kelly RM & Sosinski B (2011) Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase. Biotechnol Prog 27: 351359.
  • Santos CR, Paiva JH, Meza AN et al. (2012) Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-β-D-mannanase. J Struct Biol 177: 469476.
  • Saul DJ, Williams LC, Grayling RA, Chamley LW, Love DR & Bergquist PL (1990) celB, a gene coding for a bifunctional cellulase from the extreme thermophile “Caldocellum saccharolyticum. Appl Environ Microbiol 56: 31173124.
  • Schimming S, Schwarz WH & Staudenbauer WL (1991) Properties of a thermoactive beta-1,3-1,4-glucanase (lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochem Biophys Res Commun 177: 447452.
  • Schmidt A, Gonzalez A, Morris RJ, Costabel M, Alzari PM & Lamzin VS (2002) Advantages of high-resolution phasing: MAD to atomic resolution. Acta Crystallogr D Biol Crystallogr 58: 14331441.
  • Schubot FD, Kataeva IA, Chang J, Shah AK, Ljungdahl LG, Rose JP & Wang B-C (2004) Structural basis for the exocellulase activity of the cellobiohydrolase CbhA from Clostridium thermocellum. Biochemistry 43: 11631170.
  • Schumann J, Wrba A, Jaenicke R & Stetter KO (1991) Topographical and enzymatic characterization of amylases from the extremely thermophilic eubacterium Thermotoga maritima. FEBS Lett 282: 122126.
  • Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56: 634649.
  • Schwarz WH & Zverlov VV (2006) Protease inhibitors in bacteria: an emerging concept for the regulation of bacterial protein complexes? Mol Microbiol 60: 13231326.
  • Schwarz WH, Gräbnitz F & Staudenbauer WL (1986) Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli. Appl Environ Microbiol 51: 12931299.
  • Selvaraj T, Kim S, Kim Y et al. (2010) The role of carbohydrate-binding module (CBM) repeat of a multimodular xylanase (XynX) from Clostridium thermocellum; in cellulose and xylan binding. J Microbiol 48: 856861.
  • Shabtai Y, Chaimovitz S, Freeman A et al. (1991) Continuous ethanol production by immobilized yeast reactor coupled with membrane pervaporation unit. Biotechnol Bioeng 38: 869876.
  • Shao X, Raman B, Zhu M, Mielenz JR, Brown SD, Guss AM & Lynd LR (2011) Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol 92: 641652.
  • Shaw AJ, Podkaminer KK, Desai SG et al. (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. P Natl Acad Sci USA 105: 1376913774.
  • Shaw AJ, Hogsett DA & Lynd LR (2010) Natural competence in Thermoanaerobacter and Thermoanaerobacterium species. Appl Environ Microbiol 76: 47134719.
  • Shaw AJ, Covalla SF, Hogsett DA & Herring CD (2011) Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen. Appl Environ Microbiol 77: 25342536.
  • Shaw AJ, Covalla SF, Miller BB, Firliet BT, Hogsett DA & Herring CD (2012) Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metab Eng 14: 528532.
  • Sheehan J & Himmel M (1999) Enzymes, energy, and the environment: a strategic perspective on the US Department of Energy's research and development activities for bioethanol. Biotechnol Prog 15: 817827.
  • Shoham Y, Lamed R & Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7: 275281.
  • Sissons CH, Sharrock KR, Daniel RM & Morgan HW (1987) Isolation of cellulolytic anaerobic extreme thermophiles from New Zealand thermal sites. Appl Environ Microbiol 53: 832838.
  • Skopec CE, Himmel ME, Matthews JF & Brady JW (2003) Energetics for displacing a single chain from the surface of microcrystalline cellulose into the active site of Acidothermus cellulolyticus Cel5A. Protein Eng 16: 10051015.
  • Soboh B, Linder D & Hedderich R (2004) A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150: 24512463.
  • Souza TACB, Santos CR, Souza AR et al. (2011) Structure of a novel thermostable GH51 α-L-arabinofuranosidase from Thermotoga petrophila RKU-1. Protein Sci 20: 16321637.
  • Spiridonov NA & Wilson DB (2001) Cloning and biochemical characterization of BglC, a β-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Curr Microbiol 42: 295301.
  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315: 801804.
  • Sternberg D, Vuayakumar P & Reese ET (1977) β-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can J Microbiol 23: 139147.
  • Sticklen MB (2007) Feedstock crop genetic engineering for alcohol fuels. Crop Sci 47: 22382248.
  • Studer MH, DeMartini JD, Brethauer S, McKenzie HL & Wyman CE (2010) Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release. Biotechnol Bioeng 105: 231238.
  • Studer MH, Demartini JD, Davis MF et al. (2011) Lignin content in natural Populus variants affects sugar release. P Natl Acad Sci USA 108: 63006305.
  • Su X, Mackie RI & Cann IK (2012a) Biochemical and mutational analyses of a multidomain cellulase/mannanase from Caldicellulosiruptor bescii. Appl Environ Microbiol 78: 22302240.
  • Su X, Zhang J, Mackie RI & Cann IK (2012b) Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass. PLoS ONE 7: e43828.
  • Sunna A (2010) Modular organisation and functional analysis of dissected modular beta-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4. Appl Microbiol Biotechnol 86: 189200.
  • Suresh C, Rus'd AA, Kitaoka M & Hayashi K (2002) Evidence that the putative α-glucosidase of Thermotoga maritima MSB8 is a pNP α-D-glucuronopyranoside hydrolyzing α-glucuronidase. FEBS Lett 517: 159162.
  • Suzuki H, MacDonald J, Syed K et al. (2012) Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics 13: 444.
  • Svetlichnyi VA, Svetlichnaya TP, Chernykh NA & Zavarzin GA (1990) Anaerocellum thermophilum gen. nov sp. nov: an extremely thermophilic cellulolytic eubacterium isolated from hot springs in the Valley of Geysers. Microbiology 59: 598604.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 27312739.
  • Tarling CA, He S, Sulzenbacher G, Bignon C, Bourne Y, Henrissat B & Withers SG (2003) Identification of the catalytic nucleophile of the family 29 α-L-fucosidase from Thermotoga maritima through trapping of a covalent glycosyl-enzyme intermediate and mutagenesis. J Biol Chem 278: 4739447399.
  • Taylor F, Kurantz MJ, Goldberg N & Craig JC (1995) Continuous fermentation and stripping of ethanol. Biotechnol Prog 11: 693698.
  • Taylor LE II, Dai Z, Decker SR, Brunecky R, Adney WS, Ding S-Y & Himmel ME (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 26: 413424.
  • Te'O VS, Saul DJ & Bergquist PL (1995) celA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl Microbiol Biotechnol 43: 291296.
  • Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100180.
  • Thompson JD, Higgins DG & Gibson TJ (1994) clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 46734680.
  • Timmons MD, Knutson BL, Nokes SE, Strobel HJ & Lynn BC (2009) Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains. Appl Microbiol Biotechnol 82: 929939.
  • Tokatlidis K, Salamitou S, Béguin P, Dhurjati P & Aubert J-P (1991) Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Lett 291: 185188.
  • Tolonen AC, Chilaka AC & Church GM (2009) Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Mol Microbiol 74: 13001313.
  • Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y & Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15: 57395751.
  • Trinh CT, Wlaschin A & Srienc F (2009) Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 81: 813826.
  • Tripathi SA, Olson DG, Argyros DA et al. (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta Mutant. Appl Environ Microbiol 76: 65916599.
  • Tucker MP, Mohagheghi A, Grohmann K & Himmel ME (1989) Ultra-thermostable cellulases from Acidothermus cellulolyticus: comparison of temperature optima with previously reported cellulases. Nat Biotechnol 7: 817820.
  • Turner P, Mamo G & Karlsson E (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6: 9.
  • Tyurin MV, Desai SG & Lynd LR (2004) Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol 70: 883890.
  • Tyurin MV, Sullivan CR & Lynd LR (2005) Role of spontaneous current oscillations during high-efficiency electrotransformation of thermophilic anaerobes. Appl Environ Microbiol 71: 80698076.
  • Unsworth LD, van der Oost J & Koutsopoulos S (2007) Hyperthermophilic enzymes − stability, activity and implementation strategies for high temperature applications. FEBS J 274: 40444056.
  • Uversky V & Kataeva IA (2006) Cellulosome. Nova Science Publishers Inc., New York.
  • Valbuena A, Oroz J, Hervás R et al. (2009) On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. P Natl Acad Sci USA 106: 1379113796.
  • van de Werken HJ, Verhaart MR, VanFossen AL et al. (2008) Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol 74: 67206729.
  • van der Veen D, Lo J, Brown SD et al. (2013) Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. J Ind Microbiol Biotechnol 40: 725734.
  • van Niel EWJ, Budde MAW, de Haas GG, van der Wal FJ, Claassen PAM & Stams AJM (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energy 27: 13911398.
  • VanderGheynst JS, Rezaei F, Dooley TM & Berry AM (2010) Switchgrass leaching requirements for solid-state fermentation by Acidothermus cellulolyticus. Biotechnol Prog 26: 622626.
  • VanFossen AL, Verhaart MR, Kengen SM & Kelly RM (2009) Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences. Appl Environ Microbiol 75: 77187724.
  • VanFossen AL, Ozdemir I, Zelin SL & Kelly RM (2011) Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 108: 15591569.
  • Vazana Y, Moraïs S, Barak Y, Lamed R & Bayer EA (2010) Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states. Appl Environ Microbiol 76: 32363243.
  • Venkateswaran S & Demain AL (1986) The Clostridium thermocellumClostridium thermosaccharolyticum ethanol production process: nutritional studies and scale-down. Chem Eng Commun 45: 5360.
  • Voronov-Goldman M, Lamed R, Noach I et al. (2011) Noncellulosomal cohesin from the hyperthermophilic archaeon Archaeoglobus fulgidus. Proteins 79: 5060.
  • Waller BH, Olson DG, Currie DH, Guss AM & Lynd LR (2013) Exchange of Type II Dockerin-Containing Subunits of the C. thermocellum Cellulosome as Revealed by SNAP-tags. FEMS Microbiol Lett 338: 4653.
  • Walther TC & Mann M (2010) Mass spectrometry–based proteomics in cell biology. J Cell Biol 190: 491500.
  • Wang DIC, Avgerinos GC, Biocic I, Wang SD, Fang HY & Young FE (1983) Ethanol from cellulosic biomass. Philos Trans R Soc Lond B Biol Sci 300: 323333.
  • Wang Z-W, Lee S-H, Elkins J & Morrell-Falvey J (2011) Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum. AMB Express 1: 110.
  • Wiegel J (1980) Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Cell Mol Life Sci 36: 14341446.
  • Wiegel J & Ljungdahl LG (1981) Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128: 343348.
  • Williams TI, Combs JC, Lynn BC & Strobel HJ (2006) Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol 74: 422432.
  • Williams T, Combs J, Lynn B & Strobel H (2007) Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol 74: 422432.
  • Wilson DB (1992) Biochemistry and genetics of actinomycete cellulases. Crit Rev Biotechnol 12: 4563.
  • Wilson DB (2004) Studies of Thermobifida fusca plant cell wall degrading enzymes. Chem Rec 4: 7282.
  • Winterhalter C, Heinrich P, Candussio A, Wich G & Liebl W (1995) Identification of a novel cellulose-binding domain the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 15: 431444.
  • Wooley R, Ruth M, Glassner D & Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15: 794803.
  • Wright RM, Yablonsky MD, Shalita ZP, Goyal AK & Eveleigh DE (1992) Cloning, characterization, and nucleotide sequence of a gene encoding Microbispora bispora BglB, a thermostable β-glucosidase expressed in Escherichia coli. Appl Environ Microbiol 58: 34553465.
  • Wu JHD, Orme-Johnson WH & Demain AL (1988) Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry 27: 17031709.
  • Xu Q, Luo Y, Ding S-Y, Himmel M, Bu L, Lamed R & Bayer EA (2011) Multifunctional enzyme systems for plant cell wall degradation. Comprehensive Biotechnology, Vol. 3 (Moo-Young M, eds), pp. 1525. Academic Press, Waltham, MA.
  • Xue Y & Shao W (2005) Expression and characterization of a thermostable β-xylosidase from the hyperthermophile, Thermotoga maritima. Biotechnol Lett 26: 15111515.
  • Xue Y, Xu Y, Liu Y, Ma Y & Zhou P (2001) Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. Int J Syst Evol Microbiol 51: 13351341.
  • Yague E, Beguin P & Aubert JP (1990) Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum. Gene 89: 6167.
  • Yang H, Ichinose H, Yoshida M, Nakajima M, Kobayashi H & Kaneko S (2006) Characterization of a thermostable endo-beta-1,4-D-galactanase from the hyperthermophile Thermotoga maritima. Biosci Biotechnol Biochem 70: 538541.
  • Yang SH, Pappas KM, Hauser LJ et al. (2009a) Improved genome annotation for Zymomonas mobilis. Nat Biotechnol 27: 893894.
  • Yang SJ, Kataeva I, Hamilton-Brehm SD et al. (2009b) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl Environ Microbiol 75: 47624769.
  • Yang S, Giannone RJ, Dice L et al. (2012) Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. BMC Genomics 13: 336.
  • Yaniv O, Frolow F, Levy-Assraf M, Lamed R & Bayer E (2012a) Interactions between family 3 carbohydrate binding modules (CBMs) and cellulosomal linker peptides. Methods Enzymol 510: 247259.
  • Yaniv O, Petkun S, Shimon LJ, Bayer EA, Lamed R & Frolow F (2012b) A single mutation reforms the binding activity of an adhesion-deficient family 3 carbohydrate-binding module. Acta Crystallogr D Biol Crystallogr 68: 819828.
  • Ye L, Su X, Schmitz GE, Moon YH, Zhang J, Mackie RI & Cann IKO (2012) Molecular and biochemical analyses of the GH44 module of CbMan5B/Cel44A, a bifunctional enzyme from the hyperthermophilic bacterium Caldicellulosiruptor bescii. Appl Environ Microbiol 78: 70487059.
  • Yernool DA, McCarthy JK, Eveleigh DE & Bok JD (2000) Cloning and characterization of the glucooligosaccharide catabolic pathway beta-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana. J Bacteriol 182: 51725179.
  • Yuan T, Yang P, Wang Y et al. (2008) Heterologous expression of a gene encoding a thermostable β-galactosidase from Alicyclobacillus acidocaldarius. Biotechnol Lett 30: 343348.
  • Zambare V, Bhalla A, Muthukumarappan K, Sani R & Christopher L (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15: 611618.
  • Zeidan AA & Van Niel EWJ (2009) Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars. Int J Hydrogen Energy 34: 45244528.
  • Zeidan AA & van Niel EWJ (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int J Hydrogen Energy 35: 11281137.
  • Zeikus JG (1979) Thermophilic bacteria: ecology, physiology and technology. Enzyme Microb Technol 1: 243252.
  • Zhang YHP (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 29: 715725.
  • Zhang Y-HP & Lynd LR (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. P Natl Acad Sci USA 102: 73217325.
  • Zhang S, Lao G & Wilson DB (1995) Characterization of a Thermomonospora fusca exocellulase. Biochemistry 34: 33863395.
  • Zhang Y, Ju J, Peng H et al. (2008) Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J Biol Chem 283: 3155131558.
  • Zhang D, VanFossen A, Pagano R et al. (2011a) Consolidated pretreatment and hydrolysis of plant biomass expressing cell wall degrading enzymes. Bioenergy Res 4: 276286.
  • Zhang F, Rodriguez S & Keasling JD (2011b) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22: 775783.
  • Zhengqiang J, Kobayashi A, Ahsan MM, Lite L, Kitaoka M & Hayashi K (2001) Characterization of a thermostable family 10 endo-xylanase (XynB) from Thermotoga maritima that cleaves ρ-nitrophenyl-β-D-xyloside. J Biosci Bioeng 92: 423428.
  • Zou Z-Z, Yu H-L, Li C-X et al. (2012) A new thermostable β-glucosidase mined from Dictyoglomus thermophilum: properties and performance in octyl glucoside synthesis at high temperatures. Bioresour Technol 118: 425430.
  • Zverlov V & Schwarz W (2008a) The Clostridium thermocellum cellulosome – the paradigm of a multienzyme complex. Biotechnology of Lignocellulose Degradation and Biomass Utilization (Ohmiya K, Sakka K, Karita S, Kimura T, Sakka M & Onishi Y, eds), pp. 137147. Uni Publishers, Tokyo, Japan.
  • Zverlov VV & Schwarz WH (2008b) Bacterial cellulose hydrolysis in anaerobic environmental subsystems – Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders. Ann NY Acad Sci 1125: 298307.
  • Zverlov VV, Volkov IY, Velikodvorskaya TV & Schwarz WH (1997a) Highly thermostable endo-1,3-β-glucanase (laminarinase) Lam A from Thermotoga neapolitana: nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology 143: 17011708.
  • Zverlov VV, Volkov IY, Velikodvorskaya TV & Schwarz WH (1997b) Thermotoga neapolitana bgIB gene, upstream of lamA, encodes a highly thermostable β-glucosidase that is a laminaribiase. Microbiology 143: 35373542.
  • Zverlov V, Mahr S, Riedel K & Bronnenmeier K (1998a) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144: 457465.
  • Zverlov VV, Velikodvorskaya GV, Schwarz WH, Bronnenmeier K, Kellermann J & Staudenbauer WL (1998b) Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA. J Bacteriol 180: 30913099.
  • Zverlov VV, Fuchs K-P & Schwarz WH (2002) Chi18A, the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum. Appl Environ Microbiol 68: 31763179.
  • Zverlov VV, Velikodvorskaya GA & Schwarz WH (2003) Two new cellulosome components encoded downstream of celI in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possibly structural protein CseP. Microbiology 149: 515524.
  • Zverlov VV, Schantz N & Schwarz WH (2005a) A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1,4-glucanase producing cellotetraose. FEMS Microbiol Lett 249: 353358.
  • Zverlov VV, Kellermann J & Schwarz WH (2005b) Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 5: 36463653.
  • Zverlov VV, Schantz N, Schmitt-Kopplin P & Schwarz WH (2005c) Two new major subunits in the cellulosome of Clostridium thermocellum: xyloglucanase Xgh74A and endoxylanase Xyn10D. Microbiology 151: 33953401.
  • Zverlov VV, Klupp M, Krauss J & Schwarz WH (2008) Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. J Bacteriol 190: 43214327.