Get access

Effect of Sequestering Intrinsic Iron on the Electron Paramagnetic Resonance Signals in Powdered Soy Proteins

Authors


Direct inquiries to author Boatright (E-mail: wlboat1@uky.edu).

Abstract

 This investigation examined iron in powdered soy protein products using electron paramagnetic resonance (EPR) spectroscopy, and the effect that selectively binding free iron in isolated soy protein (ISP) had on the occurrence of metastable radicals in powdered soy proteins. EPR analyses of soybean defatted flour, commercial ISP and laboratory ISP samples revealed a peak at g = 4.3 characteristic of high-spin ferric iron in a rhombic-coordinated environment. Commercial ISP samples examined contained higher levels of the rhombic ferric iron than laboratory-prepared ISP samples. During the first 6 wk of storage the primary singlet EPR signal at g = 2.0049 in the commercial ISP samples approximately doubled, and the laboratory prepared samples increased by about 9-fold. The EPR signal was initially about 4-times higher in the freshly prepared commercial samples compared to the corresponding laboratory ISP. Laboratory ISP samples prepared with added deferoxamine to sequester endogenous iron exhibited a large increase in the high-spin ferric iron EPR signal at g = 4.3. ISP treated with deferoxamine also exhibited a multiple-line EPR signal at about g = 2.007, instead of the typical singlet signal at g = 2.0049. The power at which the signal amplitude was half-saturated also changed from about 1 mW in the control ISP to about 20 mW in the deferoxamine treated ISP. The multiple-line EPR spectrum from the ISP treated with deferoxamine increased during storage over a 6-wk period by about 6-fold. The observed changes in EPR line-shape, g-value, and power saturation with the deferoxamine treatment indicate that the primary free-radical signal in powdered ISP samples may be from stabilized tyrosine radicals with spin densities distributed over the aromatic ring.

Practical Application

 Levels of metastable radicals in powdered soy protein products typically range from 10 to 100 times greater than the free radicals in other food protein sources. Release of metastable radicals when the powdered protein is hydrated can catalyze degradative reaction in the protein and surrounding molecules. This research examines various compositional and treatment parameters that might be used to minimize the content of free radicals in foods containing soy proteins.

Ancillary