Get access

Structural and Functional Properties of Hemp Seed Protein Products



The effects of pH and protein concentration on some structural and functional properties of hemp seed protein isolate (HPI, 84.15% protein content) and defatted hemp seed protein meal (HPM, 44.32% protein content) were determined. The HPI had minimum protein solubility (PS) at pH 4.0, which increased as pH was decreased or increased. In contrast, the HPM had minimum PS at pH 3.0, which increased at higher pH values. Gel electrophoresis showed that some of the high molecular weight proteins (>45 kDa) present in HPM were not well extracted by the alkali and were absent or present in low ratio in the HPI polypeptide profile. The amino acid composition showed that the isolation process increased the Arg/Lys ratio of HPI (5.52%) when compared to HPM (3.35%). Intrinsic fluorescence and circular dichroism data indicate that the HPI proteins had a well-defined structure at pH 3.0, which was lost as pH value increased. The differences in structural conformation of HPI at different pH values were reflected as better foaming capacity at pH 3.0 when compared to pH 5.0, 7.0, and 9.0. At 10 and 25 mg/mL protein concentrations, emulsions formed by the HPM had smaller oil droplet sizes (higher quality), when compared to the HPI-formed emulsions. In contrast at 50 mg/mL protein concentration, the HPI-formed emulsions had smaller oil droplet sizes (except at pH 3.0). We conclude that the functional properties of hemp seed protein products are dependent on structural conformations as well as protein concentration and pH.

Practical Application

Hemp seed is a popular oil seed crop grown in Canada and globally for its oil and protein products. Hemp seed proteins (HSPs), which account for 25% of its composition, have been widely studied in detail, but their structural and functional properties at varying processing conditions are not well understood. This work provides information on the structural conformation and functional performance in model systems of HSP under varying pH conditions that cover the food processing range. The presented data could enhance manipulation of environmental pH conditions for the use of HSP as novel food ingredients.