SEARCH

SEARCH BY CITATION

References

  • Barrett, S.L., Cookson, B.T., Carlson, L.C., Bernard, K.A., and Coyle, M.B. (2001) Diversity within reference strains of Corynebacterium matruchotii includes Corynebacterium durum and a novel organism. J Clin Microbiol 39: 943948.
  • Ben-Dov, E., Ben Yosef, D.Z., Pavlov, V., and Kushmaro, A. (2009) Corynebacterium maris sp. nov., a marine bacterium isolated from the mucus of the coral Fungia granulosa. Int J Syst Evol Microbiol 59: 24582463.
  • Benz, M., Schink, B., and Brune, A. (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl Environ Microbiol 64: 45074512.
  • Berestovskaya, Y.Y., Ignatov, V.V., Markina, L.N., Kamenev, A.A., and Makarov, O.E. (2000) Degradation of ortho-chlorophenol, para-chlorophenol, and 2,4-dichlorophenoxyacetic acid by the bacterial community of anaerobic sludge. Microbiology 69: 397400.
  • Boyle, A.W., Knight, V.K., Haëggblom, M.M., and Young, L.Y. (1999) Transformation of 2,4-dichlorophenoxyacetic acid in four different marine and estuarine sediments: effects of sulfate, hydrogen and acetate on dehalogenation and side-chain cleavage. FEMS Microbiol Ecol 106: 105113.
  • Cervantes, F.J., de Bok, F.A., Duong-Dac, T., Stams, A.J., Lettinga, G., and Field, J.A. (2002) Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ Microbiol 4: 5157.
  • Chen, H.H., Li, W.J., Tang, S.K., Kroppenstedt, R.M., Stackebrandt, E., Xu, L.H., et al. (2004) Corynebacterium halotolerans sp. nov., isolated from saline soil in the west of China. Int J Syst Evol Microbiol 54: 779782.
  • Coates, J.D., Ellis, D.J., Blunt-Harris, E.L., Gaw, C.V., Roden, E.E., and Lovley, D.R. (1998) Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 64: 15041509.
  • Collins, M.D., Hoyles, L., Hutson, R.A., Foster, G., and Falsen, E. (2001) Corynebacterium testudinoris sp. nov., from a tortoise, and Corynebacterium felinum sp. nov., from a Scottish wild cat. Int J Syst Evol Microbiol 51: 13491352.
  • Curtis, G.P., and Reinhard, M. (1994) Reductive dehalogenation of hexachlorethane, carbon tetrachloride, and bromoform by anthrahyroquinone disulfonate and humic acid. Environ Sci Technol 28: 23932401.
  • D'Orazio, V., and Senesi, N. (2009) Spectroscopic properties of humic acids isolated from the rhizosphere and bulk soil compartments and fractionated by size-exclusion chromatography. Soil Biol Biochem 41: 17751781.
  • Du, Z.J., Jordan, E.M., Rooney, A.P., Chen, G.J., and Austin, B. (2010) Corynebacterium marinum sp. nov. isolated from coastal sediment. Int J Syst Evol Microbiol 60: 19441947.
  • Fu, Q.S., Barkovskii, A.L., and Adriaens, P. (1999) Reductive transformation of dioxins: an assessment of the contribution of dissolved organic matter to dechlorination reactions. Environ Sci Technol 33: 38373842.
  • Gu, B., and Chen, J. (2003) Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions. Geochim Cosmochim Acta 67: 35753582.
  • Kappler, A., Benz, M., Schink, B., and Brune, A. (2004) Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol Ecol 47: 8592.
  • Kim, D., and Strathmann, T.J. (2007) Role of organically complexed iron(II) species in the reductive transformation of RDX in anoxic environments. Environ Sci Technol 41: 12571264.
  • Li, F.B., Wang, X.G., Li, Y.T., Liu, C.S., Zeng, F., Zhang, L.J., et al. (2008) Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface. J Colloid Interface Sci 321: 332341.
  • Li, F.B., Li, X.M., Zhou, S.G., Zhuang, L., Cao, F., Huang, D.Y., et al. (2010) Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environ Pollut 158: 17331740.
  • Liebl, W. (1992) The Genus Corynebacterium–nonmedical. In The Prokaryotes, Vol. 2, 2nd edn. Balows, A. , Trüper, H.G. , Dworkin, M. , Harder, W. , and Schleifer, K.H. (eds). New York, USA: Springer-Verlag, pp. 11571171.
  • Liu, C.X., Zachara, J.M., Foster, N.S., and Strickland, J. (2007) Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate. Environ Sci Technol 41: 77307735.
  • Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., and Woodward, J.C. (1996) Humic substances as electron acceptors for microbial respiration. Nature 382: 445448.
  • Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Phillips, E.J.P., and Coates, J.D. (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26: 152157.
  • Lovley, D.R., Kashefi, K., Vargas, M., Tor, J.M., and Blunt-Harris, E.L. (2000) Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem Geol 169: 289298.
  • Lovley, D.R., Holmes, D.E., and Nevin, K.P. (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49: 219286.
  • Ma, C., Zhuang, L., Zhou, S.G., Yang, G.Q., Yuan, T., and Xu, R.X. (2012) Alkaline extracellular reduction: isolation and characterization of an alkaliphilic and halotolerant bacterium, Bacillus pseudofirmus MC02. J Appl Microbiol 112: 883891.
  • Müller, R.H., Müller, R.A., Jahn, Y., and Babel, W. (1999) A biotechnological approach of detoxifying herbicide-contaminated building rubble. In Bioremediation of Nitroaromatic and Haloaromatic Compounds. Alleman, B.C. , and Leeson, A. (eds). Columbus, OH, USA: Battelle Press, pp. 143148.
  • Nevin, K.P., and Lovley, D.R. (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68: 22942299.
  • Rau, J., and Stolz, A. (2003) Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases. Appl Environ Microbiol 69: 34483455.
  • Scott, D.T., Mcknight, D.M., Blunt-Harris, E.L., Kolesar, S.E., and Lovley, D.R. (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humic-reducing microorganisms. Environ Sci Technol 32: 29842989.
  • Stevenson, F.J. (1994) Humus Chemistry: Genesis, Composition, Reactions. New York, USA: Wiley.
  • Ulukanli, Z., and Diğrak, M. (2002) Alkaliphilic micro-organisms and habitats. Turk J Biol 26: 181191.
  • Van der Zee, F.P., and Cervantes, F.J. (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27: 256277.
  • Walters, J. (1999) Environmental fate of 2,4-dichlorophenoxyacetic acid. Sacramento, CA, USA: Department of Pesticide Regulations, pp. 118.
  • Weber, K.A., Achenbach, L.A., and Coates, J.D. (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4: 752764.
  • Williams, A.G.B., Gregory, K.B., Parkin, G.F., and Scherer, M.M. (2005) Hexahydro-1,3,5-trinitro-1,3,5-triazine transformation by biologically reduced ferrihydrite: evolution of Fe mineralogy, surface area, and reaction rates. Environ Sci Technol 39: 51835189.
  • Wolf, M., Kappler, A., Jiang, J., and Meckenstock, R.U. (2009) Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. Environ Sci Technol 43: 56795685.
  • Wu, C.Y., Zhuang, L., Zhou, S.G., Li, F.B., and Li, X.M. (2010) Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. FEMS Microbiol Ecol 71: 106113.
  • Wu, C.Y., Zhuang, L., Zhou, S.G., Li, F.B., and He, J. (2011) Corynebacterium humireducens sp. nov., a alkaliphilic humic-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 61: 882887.
  • Ye, Q., Roh, Y., Carroll, S.L., Blair, B., Zhou, J.Z., Zhang, C.L., et al. (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70: 55955602.
  • Yuan, T., Yuan, Y., Zhou, S.G., Li, F.B., Liu, Z., and Zhuang, L. (2011) A rapid and simple electrochemical method for evaluating the electron transfer capacities of dissolved organic matter. J Soils Sediments 11: 467473.
  • Zachara, J.M., Fredrickson, J.K., Li, S.M., Kennedy, D.W., and Smith, S.C. (1998) Bacterial reduction of crystalline Fe(III) oxides in single phase suspensions and subsurface materials. Am Mineral 83: 14261443.
  • Zhilina, T.N., Zavarzina, D.G., Kolganova, T.V., Lysenko, A.M., and Tourova, T.P. (2009a) Alkaliphilus peptidofermentans sp. nov., a now alkaliphilic bacterial soda lake isolate capable of peptide fermentation and Fe(III) reduction. Microbiology 78: 445454.
  • Zhilina, T.N., Zavarzina, D.G., Osipov, G.A., Kostrikina, N.A., and Tourova, T.P. (2009b) Natronincola ferrireducens sp. nov., and Natronincola peptidovorans sp. nov., new anaerobic alkaliphilic peptolytic iron-reducing bacteria isolated from soda lakes. Microbiology 78: 455467.