SEARCH

SEARCH BY CITATION

References

  • Ajinomoto (2010) Food products business [WWW document]. URL http://www.ajinomoto.com/ir/pdf/Food-Oct2010.pdf
  • Ajinomoto (2011) Feed-use amino acid business [WWW document]. URL http://www.ajinomoto.com/ir/pdf/Feed-useAA-Oct2011.pdf
  • Aparicio, M., Cano, N.J.M., Cupisti, A., Ecder, T., Fouque, D., Garneata, L., et al. (2009) Keto-acid therapy in predialysis chronic kidney disease patients: consensus statements. J Ren Nutr 19: 3335.
  • Aparicio, M., Bellizzi, V., Chauveau, P., Cupisti, A., Ecder, T., Fouque, D., et al. (2012) Keto acid therapy in predialysis chronic kidney disease patients: final consensus. J Ren Nutr 22: 2224.
  • Aristidou, A., and Penttilä, M. (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11: 187198.
  • Banks, J.M., Yvon, M., Gripon, J.C., ‘la Fuente, M.A., Brechany, E.Y., Williams, A.G., and Muir, D.D. (2001) Enhancement of amino acid catabolism in cheddar cheese using α-ketoglutarate: amino acid gegradation in relation to volatile compounds and aroma character. Int Dairy J 11: 235243.
  • Barret, E., Stanton, C., Zelder, O., Fitzgerald, G., and Ross, R.P. (2004) Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 70: 28612866.
  • Becker, J., and Wittmann, C. (2011) Bio-based production of chemicals, materials and fuels – Corynebacterium glutamicum as versatile cell factory. Curr Opinion Biotechnol 23: 110.
  • Binder, S., Schendzielorz, G., Stäbler, N., Ktumbach, K., Hoffmann, K., Bott, M., and Eggeling, L. (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13: R40.
  • Blombach, B., and Eikmanns, B.J. (2011) Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Bioeng Bugs 2: 346350.
  • Blombach, B., and Seibold, G. (2010) Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains. Appl Microbiol Biotechnol 86: 13131322.
  • Blombach, B., Schreiner, M.E., Holátko, J., Bartek, T., Oldiges, M., and Eikmanns, B.J. (2007) L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73: 20792084.
  • Blombach, B., Schreiner, M.E., Bartek, T., Oldiges, M., and Eikmanns, B.J. (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79: 471479.
  • Blombach, B., Arndt, A., Auchter, M., and Eikmanns, B.J. (2009) L-valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol 75: 11971200.
  • Blombach, B., Riester, T., Wieschalka, S., Ziert, C., Youn, J.W., Wendisch, V.F., and Eikmanns, B.J. (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77: 33003310.
  • Bott, M. (2007) Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends Microbiol 15: 417425.
  • Bozell, J.J., and Petersen, G.R. (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy's ‘Top 10’ revisited. Green Chem 12: 539554.
  • Brinkrolf, K., Schröder, J., Pühler, A., and Tauch, A. (2010) The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production. J Biotechnol 149: 173182.
  • Burkowski, A. (2008) Corynebacteria – Genomics and Molecular Biology. Norfolk, UK: Caister Academic Press.
  • Buschke, N., Schröder, H., and Wittmann, C. (2011) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6: 306317.
  • Chang, D.E., Jung, H.C., Rhee, J.S., and Pan, J.G. (1999) Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65: 13841389.
  • Cooper, A.J.I., Ginos, J.Z., and Meister, A. (1983) Synthesis and properties of the alpha-keto acids. Chem Rev 83: 321358.
  • Dodds, D.R., and Gross, R.A. (2007) Chemicals from biomass. Science 318: 12501251.
  • Dominguez, H., Nezondet, C., Lindley, N.D., and Cocaign, M. (1993) Modified carbon flux during oxygen-limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotechnol Lett 15: 449454.
  • Eggeling, L. , and Bott, M. (eds) (2005) Handbook of Corynebacterium glutamicum. Boca Raton, FL, USA: CRC Press LLC.
  • Feiten, S.F., Draibe, S.A., Watanabe, R., Duenhas, M.R., Baxmann, A.C., Nerbass, F.B., and Cuppari, L. (2005) Short-term effects of a very-low-protein diet supplemented with ketoacids in nondialyzed chronic kidney disease patients. Eur J Clin Nutr 59: 129136.
  • Fukushima, K., Chang, Y.H., and Kimura, Y. (2007) Enhanced stereocomplex formation of poly(L-lactic acid) and poly(d-lactic acid) in the presence of stereoblock poly(lactic acid). Macromol Biosci 7: 829835.
  • Glassner, D.A., and Datta, R. (1992) Process for the production and purification of succinic acid. US Patent, patent number 5,143,834.
  • Gopinath, V., Meiswinkel, T.M., Wendisch, V.F., and Nampoothiri, K.M. (2011) Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol 92: 985996.
  • Gopinath, V., Murali, A., Dhar, K.S., and Nampoothiri, K.M. (2012) Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products. Appl Microbiol Biotechnol 93: 95106.
  • Gruteser, N., Marin, K., Krämer, R., and Thomas, G.H. (2012) Sialic acid utilization by the soil bacterium Corynebacterium glutamicum. FEMS Microbiol Lett 336: 131138.
  • Gutiérrez-Mendéz, N., Vallejo-Cordoba, B., González-Córdova, A.F., Nevárez-Moorillón, G.V., and Rivera-Chavira, B. (2008) Evaluation of aroma generation of Lactococcus lactis with an electronic nose and sensory analysis. J Dairy Sci 91: 4957.
  • Hofvendahl, K., and Hahn-Hägerdal, B. (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26: 87107.
  • Howard, J.W., and Fraser, W.A. (1932) Preparation of pyruvic acid. Org Synth Coll 1: 475480.
  • Inui, M., Murakami, S., Okino, S., Kawaguchi, H., Vertès, A.A., and Yukawa, H. (2004a) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7: 182196.
  • Inui, M., Kawaguchi, H., Murakami, S., Vertès, A.A., and Yukawa, H. (2004b) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen deprivation-conditions. J Mol Microbiol Biotechnol 8: 243225.
  • Jantama, K., Zhang, X., Moore, J.C., Shanmugam, K.T., Svoronos, S.A., and Ingram, L.O. (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101: 881893.
  • Jo, J.-H., Seol, H.-Y., Lee, Y.-B., Kim, M.-H., Hyun, H.-H., and Lee, H.-H. (2012) Disruption of genes for enhanced biosynthesis of α-ketoglutarate in Corynebacterium glutamicum. Can J Microbiol 58: 278286.
  • Jojima, T., Omumasaba, C.A., Inui, M., and Yukawa, H. (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85: 471480.
  • Kawaguchi, H., Vertès, A.A., Okino, S., Inui, M., and Yukawa, H. (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72: 34183428.
  • Kawaguchi, H., Sasaki, M., Vertès, A.A., Inui, M., and Yukawa, H. (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77: 10531062.
  • Kind, S., and Wittmann, C. (2011) Bio-based production of the platform chemical 1,5-diaminopentane. Appl Microbiol Biotechnol 5: 12871296.
  • Kind, S., Jeong, W.K., Schröder, H., and Wittmann, C. (2010a) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12: 341351.
  • Kind, S., Jeong, W.K., Schröder, H., Zelder, O., and Wittmann, C. (2010b) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76: 51755180.
  • Kirchner, O., and Tauch, A. (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104: 287299.
  • Kotrba, P., Inui, M., and Yukawa, H. (2003) A single V317A or V317M substitution in enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149: 15691580.
  • Krause, F.S., Henrich, A., Blombach, B., Krämer, R., Eikmanns, B.J., and Seibold, G.M. (2009) Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity. Appl Environ Microbiol 76: 370374.
  • Krause, F.S., Blombach, B., and Eikmanns, B.J. (2010) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol 76: 80538061.
  • Lee, S.J., Song, H., and Lee, S.Y. (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72: 19391948.
  • Li, Y., Chen, J., and Lun, S.Y. (2001) Biotechnological production of pyruvic acid. Appl Microbiol Biotechnol 57: 451459.
  • Liebl, W. (2006) The genus Corynebacterium – nonmedical. In The Prokaryotes, Vol. 3., 3rd edn. Dworkin, M. , Falkow, S. , Rosenberg, E. , Schleifer, K.H. , and Stackebrandt, E. (eds). New York, USA: Springer, pp. 796818.
  • Lin, H., Bennett, G.N., and San, K.Y. (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 7: 116127.
  • Litsanov, B., Kabus, A., Brocker, M., and Bott, M. (2012a) Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 5: 116128.
  • Litsanov, B., Brocker, M., and Bott, M. (2012b) Towards homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic succinate production from glucose and formate. Appl Environ Microbiol 78: 33253337.
  • Litsanov, B., Brocker, M., and Bott, M. (2012c) Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb Biotechnol doi: 10.1111/j.1751-7915.2012.00347.x.
  • Lorenz, P., and Zinke, H. (2005) White biotechnology: differences in US and EU approaches? Trends Biotechnol 23: 570574.
  • McKinlay, J.B., Vieille, C., and Zeikus, J.G. (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76: 727740.
  • Martínez, I., Bennett, G.N., and San, K.Y. (2010) Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain. Metab Eng 12: 499509.
  • Mimitsuka, T., Sawai, H., Hatsu, M., and Yamada, K. (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71: 21302135.
  • Mustafi, N., Grünberger, A., Kohlheyer, D., Bott, M., and Frunzke, J. (2012) The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metab Eng 14: 449457.
  • Neuner, A., Wagner, I., Sieker, T., Ulber, R., Schneider, K., Peifer, S., and Heinzle, E. (2012) Production of L-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. J Biotechnol Aug 9. [Epub ahead of print].
  • Nishimura, T., Vertès, A.A., Shinoda, Y., Inui, M., and Yukawa, H. (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75: 889897.
  • Ödmann, P., Welborn, W., and Bommarius, A.S. (2004) An enzymatic process to α-ketoglutarate from L-glutamate: the coupled system L-glutamate dehydrogenase/NADH oxidase. Tetrahedron: Asymmetry 15: 29332937.
  • Okano, K., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85: 413423.
  • Okino, S., Inui, M., and Yukawa, H. (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68: 475480.
  • Okino, S., Noburyu, R., Suda, M., Jojima, T., Inui, M., and Yukawa, H. (2008a) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81: 459464.
  • Okino, S., Suda, M., Fujikura, K., Inui, M., and Yukawa, H. (2008b) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78: 449454.
  • Riedel, E., Nundel, M., and Hampl, H. (1996) α-ketoglutarate application in hemodialysis patients improves amino acid metabolism. Nephron 74: 261265.
  • Rittmann, D., Lindner, S.N., and Wendisch, V.F. (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74: 62166222.
  • Rumbold, K., van Buijsen, H.J.J., Gray, V.M., van Groenestijn, J.W., Overkamp, K.M., Slomp, R.S., et al. (2010) Microbial renewable feedstock utilization – a substrate-oriented approach. Bioeng Bugs 1: 359366.
  • Saitoh, S., Ishida, N., Onishi, T., Tokuhiro, K., Nagamori, E., Kitamoto, K., and Takahashi, H. (2005) Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity. Appl Environ Microbiol 71: 27892792.
  • Sánchez, A.M., Bennett, G.N., and San, K.Y. (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7: 229239.
  • Sasaki, M., Jojima, T., Inui, M., and Yukawa, H. (2008) Simultaneous utilization of d-cellobiose, d-glucose, and d-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 81: 691699.
  • Sasaki, M., Jojima, T., Kawaguchi, H., Inui, M., and Yukawa, H. (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85: 105115.
  • Sasaki, M., Jojima, T., Inui, M., and Yukawa, H. (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86: 10571066.
  • Sasaki, M., Teramoto, H., Inui, M., and Yukawa, H. (2011) Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Appl Microbiol Biotechnol 89: 19051916.
  • Sauer, M., Porro, D., Mattanovich, D., and Branduardi, P. (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26: 100108.
  • Sauer, U., and Eikmanns, B.J. (2005) The PEP–pyruvate–oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29: 765794.
  • Schaefer, K., von Herrath, D., Erley, C.M., and Asmus, G. (1994) Calcium ketovaline as new therapy for uremic hyperphosphatemia. Miner Electrolyte Metab 16: 362364.
  • Schneider, J., and Wendisch, V.F. (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88: 859868.
  • Schneider, J., and Wendisch, V.F. (2011) Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 91: 1730.
  • Schneider, J., Niermann, K., and Wendisch, V.F. (2011) Production of amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154: 191198.
  • Schneider, J., Eberhard, D., and Wendisch, V.F. (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 95: 169178.
  • Schreiner, M.E., Fiur, D., Holátko, J., Pátek, M., and Eikmanns, B.J. (2005) E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J Bacteriol 187: 60056018.
  • Schreiner, M.E., Riedel, C., Holátko, J., Pátek, M., and Eikmanns, B.J. (2006) Pyruvate:quinone oxidoreductase in Corynebacterium glutamicum: molecular analysis of the pqo gene, significance of the enzyme, and phylogenetic aspect. J Bacteriol 188: 13411350.
  • Seibold, G., Auchter, M., Berens, S., Kalinowski, J., and Eikmanns, B.J. (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124: 381391.
  • Smith, K.M., Cho, K.M., and Liao, J.C. (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87: 10451055.
  • Song, Y., Matsumoto, K., Tanaka, T., Kondo, A., and Taguchi, S. (2012) Single-step production of polyhydroxybutyrate from starch by using α-amylase cell-surface displaying system of Corynebacterium glutamicum. J Biosci Bioeng Sep 4. [Epub ahead of print].
  • Takahashi, C., Shirakawa, J., Tsuchidate, T., Okai, N., Hatada, K., Nakayama, H., et al. (2012) Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxyölase from Escherichia coli. Enzyme Microb Technol 51: 171176.
  • Takeno, S., Ohnishi, J., Komatsu, T., Masaki, T., Sen, K., and Ikeda, M. (2007) Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 75: 11731182.
  • Takors, R., Bathe, B., Rieping, M., Hans, S., Kelle, R., and Huthmacher, K. (2007) Systems biology for industrial strains and fermentation processes – example: amino acids. J Biotechnol 129: 181190.
  • Tateno, T., Fukuda, H., and Kondo, A. (2007) Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal seuence. Appl Microbiol Biotechnol 77: 533541.
  • Teramoto, H., Inui, M., and Yukawa, H. (2011) transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum. J Biotechnol 154: 114125.
  • Teschan, P.E., Beck, G.J., Dwyer, J.T., Greene, T., Klahr, S., Levy, A.S., et al. (1998) Effect of a ketoacid-aminoacid-supplemented very low protein diet on the progression of advanced renal disease: a reanalysis of the MDRD feasibility study. Clin Nephrol 50: 273283.
  • Uehara, H., Karaki, Y., Wada, S., and Yamanobe, T. (2010) Stereo-complex crystallization of poly(lactic acid)s in block-copolymer phase separation. ACS Appl Mater Interfaces 2: 27072710.
  • Uhde, A., Youn, J.W., Maeda, T., Clermont, L., Matano, C., Krämer, R., et al. (2012) Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biotechnol Aug 2. [Epub ahead of print].
  • Vertes, A.A., Inui, M., and Yukawa, H. (2012) Postgenomic approaches to using corynebacteria as biocatalysts. Annu Rev Microbiol 66: 521550.
  • Wendisch, V.F., Bott, M., Kalinowski, J., Oldiges, M., and Wiechert, W. (2006a) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124: 7492.
  • Wendisch, V.F., Bott, M., and Eikmanns, B.J. (2006b) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9: 268274.
  • Wendisch, V.F., Lindner, S.N., and Meiswinkel, T.M. (2011) Use of glycerol in biotechnological applications. In Biodiesel – Quality, Emissions and By-Products. Montero, G. , and Stoytcheva, M. (eds). Rijeka, Croatia: InTech, pp. 305341.
  • Werpy, T., and Petersen, G.R. (2004) Top Value Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Oak Ridge, TN, USA: U.S. Department of Energy.
  • Wieschalka, S., Blombach, B., and Eikmanns, B.J. (2012) Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol 94: 449459.
  • Wiselogel, A., Tyson, S., and Johnson, D. (1996) Biomass Feedstock Resources and Composition. Washington, DC, USA: Taylor & Francis.
  • Yazdani, S.S., and Gonzalez, R. (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18: 213219.
  • Zeikus, J.G., Jain, M.K., and Elankovan, P. (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51: 545552.
  • Zelic, B., Gerharz, T., Bott, M., Vasic-Racki, D., Wandrey, C., and Takors, R. (2003) Fed-batch process for pyruvate production by recombinant Escherichia coli YYC202 strain. Eng Life Sci 3: 299305.
  • Zhou, J., Yin, X., Madzak, C., Du, G., and Chen, J. (2012) Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism. J Biotechnol 161: 257264.
  • Zhou, S., Causey, T.B., Hasona, A., Shanmugam, K.T., and Ingram, L.O. (2003a) Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69: 399407.
  • Zhou, S., Shanmugam, K.T., and Ingram, L.O. (2003b) Functional replacement of the Escherichia coli D-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl Environ Microbiol 69: 22372244.
  • Zhu, Y., Eiteman, M.A., Altman, R., and Altman, E. (2008) High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain. Appl Environ Microbiol 74: 66496655.