SEARCH

SEARCH BY CITATION

References

  • Agarry, S.E., Durojaiye, A.O., and Solomon, B.O. (2008) Microbial degradation of phenols: a review. Int J Environ Pollut 32: 1228.
  • Bond, D.R., and Lovley, D.R. (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69: 15481555.
  • Chaudhuri, S.K., and Lovley, D.R. (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21: 12291232.
  • Cheng, S., Liu, H., and Logan, B.E. (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40: 24262432.
  • El-Sayed, W.S., Ibrahim, M.K., Abu-Shady, M., El-Beih, F., Ohmura, N., Saiki, H., and Ando, A. (2003) Isolation and characterization of phenol-catabolizing bacteria from a coking plant. Biosci Biotechnol Biochem 67: 20262029.
  • Fischer, J., Kappelmeyer, U., Kastner, M., Schauer, F., and Heipieper, H.J. (2010) The degradation of bisphenol A by the newly isolated bacterium Cupriavidus basilensis JF1 can be enhanced by biostimulation with phenol. Int Biodeterior Biodegradation 64: 324330.
  • Gopaul, K., Robinson, C.W., and Imniss, W.E. (1991) Phenol degradation by psychotropic strain of Pseudomonas putida. Appl Environ Microbiol 34: 539543.
  • Greenberg, A.E. (2005) Standard Methods for the Examination of Water and Wastewater, 21st edn. Washington, DC: American Public Health Association.
  • Kiely, P.D., Call, D.F., Yates, M.D., Regan, J.M., and Logan, B.E. (2010) Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl Microbiol Biotechnol 88: 371380.
  • Kumar, R., Singh, S., and Singh, O.V. (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35: 377391.
  • Lalaurette, E., Thammannagowda, S., Mohagheghi, A., Maness, P.C., and Logan, B.E. (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrogen Energy 34: 62016210.
  • Ledrich, M.L., Stemmler, S., Laval-Gilly, P., Foucaud, L., and Falla, J. (2005) Precipitation of silver–thiosulfate complex and immobilization of silver by Cupriavidus metallidurans CH34. Biometals 18: 643650.
  • Liu, B.F., Ren, N.Q., Tang, J., Ding, J., Liu, W.Z., Xu, J.F., et al. (2010) Bio-hydrogen production by mixed culture of photo- and dark-fermentation bacteria. Int J Hydrogen Energy 35: 28582862.
  • Logan, B.E. (2008) Microbial Fuel Cells. Hoboken, NJ, USA: John Wiley and Sons.
  • Luo, H., Liu, G., Zhang, R., and Jin, S. (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147: 259264.
  • Min, B., Kim, J.R., Oh, S.E., Regan, J.M., and Logan, B.E. (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39: 49614968.
  • Monchy, S., Benotmane, M.A., Janssen, P., Vallaeys, T., Taghavi, S., van der Lelie, D., and Mergeay, M. (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189: 74177425.
  • Morris, J.M., and Jin, S. (2008) Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. J Environ Sci Health A 43: 1823.
  • Oh, S.E., Kim, J.R., Joo, J.H., and Logan, B.E. (2009) Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci Technol 60: 13111317.
  • Park, D.H., and Zeikus, J.G. (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81: 348355.
  • Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M., and Verstraete, W. (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70: 53735382.
  • Rabaey, K., Boon, N., Hofte, M., and Verstraete, W. (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39: 34013408.
  • Read, S.T., Dutta, P., Bond, P.L., Keller, J., and Rabaey, K. (2010) Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10: 98. doi:10.1186/1471-2180-10-98
  • Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard, T.L., and Lovley, D.R. (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72: 73457348.
  • Ren, N., Wang, A., Cao, G., Xu, J., and Gao, L. (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27: 10511060.
  • van Schie, P.M., and Young, L.Y. (2000) Biodegradation of phenol: mechanisms and applications. J Bioremediation 4: 118.
  • Xing, D.F., Zuo, Y., Cheng, S.A., Regan, J.M., and Logan, B.E. (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42: 41464151.
  • Yi, H.N., Nevin, K.P., Kim, B.C., Franks, A.E., Klimes, A., Tender, L.M., and Lovley, D.R. (2009) Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24: 34983503.