SEARCH

SEARCH BY CITATION

References

  • Argüelles, J.C. (1997) Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans. FEMS Microbiol Lett 146: 6571.
  • Argüelles, J.C. (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174: 217224.
  • Becker, J., Klopprogge, C., Zelder, O., Heinzle, E., and Wittmann, C. (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71: 85878596.
  • Becker, J., Klopprogge, C., Herold, A., Zelder, O., Bolten, C.J., and Wittmann, C. (2007) Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum-over-expression and modification of G6P dehydrogenase. Appl Environ Microbiol 132: 99109.
  • Belloch, C., Orlic, S., Barrio, E., and Querol, A. (2008) Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol 122: 188195.
  • Brennan, P.J., and Nikaido, H. (1995) The envelope of Mycobacteria. Annu Rev Biochem 64: 2963.
  • Cardoso, F.S., Gaspar, P., Hugenholtz, J., Ramos, A., and Santos, H. (2004) Enhancement of trehalose production in dairy Propionibacteria through manipulation of environmental conditions. Int J Food Microbiol 91: 195204.
  • Cardoso, F.S., Castro, R.F., Borges, N., and Santos, H. (2007) Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii and their role in stress response. Microbiology 153: 270280.
  • Carpinelli, J., Kramer, R., and Agosin, E. (2006) Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 72: 19491955.
  • Carvalho, A.L., Cardoso, F.S., Bohn, A., Neves, A.R., and Santos, H. (2011) Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Appl Environ Microbiol 77: 41894199.
  • Chandra, G., Chater, K.F., and Bornemann, S. (2011) Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157: 15651572.
  • Chi, Z.M., Liu, J., Ji, J.R., and Meng, Z.L. (2003) Enhanced conversion of soluble starch to trehalose by a mutant of Saccharomycopsis fibuligera Sdu. J Biotechnol 102: 135141.
  • Conlin, L., and Nelson, H. (2007) The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor? Mol Cell Biol 27: 15051515.
  • Cousin, F., Mater, D.D.G., Foligné, B., and Jan, G. (2010) Dairy Propionibacteria as human probiotics: a review of recent evidence. Dairy Sci Technol 91: 126.
  • Csonka, L.N., and Hanson, A.D. (1991) Prokaryotic osmoregulation-genetics and physiology. Annu Rev Microbiol 45: 569606.
  • Dalmasso, D., Aubert, J., Even, S., Falentin, H., Maillard, M.-B., Parayre, S., et al. (2012) Accumulation of intracellular glycogen and trehalose by Propionibacterium freudenreichii under conditions mimicking cheese ripening in the cold. Appl Environ Microbiol 78: 63576364.
  • De Smet, K.A., Weston, A., Brown, I.N., Young, D.B., and Robertson, B.D. (2000) Three pathways for trehalose biosynthesis in Mycobacteria. Microbiology 146: 199208.
  • Degeest, B., and Vuyst, L.D. (2000) Correltion of activities of the enzymes alpha phosphoglucomutase, UDP-4-epimerase and UDP-glucose pyrophosphorylase with exopolysaccharides biosynthesis by S. thermophilus LY03. Appl Environ Microbiol 8: 35193527.
  • Duan, X., Chi, Z., Wang, L., and Wang, X. (2008) Influence of different sugars on pullulan production and activities of a-phosphoglucomutase, UDP-G-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym 73: 587593.
  • Elbein, A.D., Pan, Y.T., Pastuszak, I., and Carrol, D. (2003) New insights on trehalose molecule: a multifunctional role. Glycobiology 13: 1727.
  • Elbein, A.D., Pastuszak, I., Tackett, A.J., Wilson, T., Yuan, T., and Pan, Y.T. (2010) Last step in the conversion of trehalose to glycogen a mycobacterial enzyme that transfer maltose from maltose-1-P to glycogen. J Biol Chem 285: 98039812.
  • Estruch, F. (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24: 469486.
  • Falentin, H., Deutsch, S.M., Jan, G., Loux, V., Thierry, A., Parayre, S., et al. (2010) The complete genome of Propionibacterium freudenreichii CIRM-BIA1, a hardy actinobacterium with food and probiotic applications. PloS One 5: e11748.
  • Giaever, H.M., Styrvold, O.B., Kaasen, I., and Strom, A.R. (1988) Biochemical and genetic characterisation of osmoregulatory trehalose synthesis in E. coli. J Bacteriol 170: 28412849.
  • Grobben, G.J., Smith, M.R., Sikkema, J., and de Bont, J.A.M. (1996) Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. Appl Microbiol Biotechnol 46: 279284.
  • Higashiyama, T. (2002) Novel functions and applications of trehalose. Pure Appl Chem 74: 12631269.
  • Hottiger, T., De Virgilio, C., Hall, M., Boller, T., and Wiemken, A. (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. FEBS J 219: 187193.
  • Hugenholtz, J., Hunik, J., Santos, H., and Schmid, E. (2002) Neutraceuticals production by Propionibacterium. Lait 82: 103112.
  • Hugenschmidt, S., Schwenninger, M., and Lacroix, C. (2010) Screening of a natural biodiversity of lactic and propionic acid bacteria for folate and vitamin B12 production in supplemented whey permeate. Int Dairy J 20: 852857.
  • Hugenschmidt, S., Schwenninger, M.S., and Lacroix, C. (2011) Concurrent high production of natural folate and vitamin B12 using a co-culture process with Lactobacillus plantarum M39 and Propionibacterium freudenreichii DF13. Process Biochem 46: 10631070.
  • Jung, G.Y., and Stephanopoulos, G. (2004) A functional protein chip for combinatorial pathway optimization and in vitro metabolic engineering. Science 304: 428431.
  • Katsuno, M., Adachi, H., and Sobue, G. (2004) Sweet relief for Huntington disease. Nat Med 10: 123124.
  • Kaushik, J., and Bhat, R. (2003) Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem 278: 2645626458.
  • Kobayashi, K., Kato, M., Miura, Y., Kettoku, M., Komeda, T., and Iwamatsu, A. (1996) Gene analysis of trehalosashe-producing enzymes from hyperthermophilic archaea in Sulfolobales. Biosci Biotechnol Biochem 60: 17201723.
  • Kroger, M., Meister, K., and Kava, R. (2006) Low-calorie Sweeteners and other sugar substitutes: a review of the safety issues. Comp Rev Food Sci Food Saf 5: 3547.
  • Krömer, J.O., Bolten, C.J., Heinzle, E., Schröder, H., and Wittmann, C. (2008) Physiological response of Corynebacterium glutamicum to oxidatice stress induced by deletion of the transcription repressor Mcb R. Microbiology 154: 39173930.
  • Li, H., Su, H., Kim, S.B., Chang, Y.K., Hong, S.-K., Seo, Y.G., and Kim, C.J. (2011) Enhanced production of trehalose in Escherichia coli by homologous expression of otsBA in the presence of the trehalase inhibitor, validamycin A, at high osmolarity. J Biosc Bioeng 113: 224232.
  • Magazù, S., Migliardo, F., Mondelli, C., and Vadala, M. (2005) Correlation between bioprotective effectiveness and dynamic properties of trehalose–water, maltose–water and sucrose–water mixtures. Carbohydr Res 340: 27962801.
  • Mendes, V., Maranha, A., Lamosaz, P., Costa, M., and Empadinhas, N. (2010) Biochemical characterisation of maltokinase from Mycobacterium bovis BCG. BMC Biochem 11: 21.
  • Mozzi, F., Rollan, G., Savoy, G.G., and de Valdez, F. (2001) Effect of galactose and glucose on the exopolysaccharide production and the activities of biosynthetic enzymes in Lactobacillus casei CRL 87. J Appl Microbiol 91: 160167.
  • Padilla, L., Kramer, R., Stephanopoulos, G., and Agosin, E. (2004a) Overproduction of trehalose: heterologous expression of E. coli trehalose-6-phosphate synthase, trehalose-6-phosphatase in Corynebacterium gluticum. Appl Environ Microbiol 70: 370376.
  • Padilla, L., Morbach, S., Kramer, R., and Agosin, E. (2004b) Impact of heterologous expression of E. coli UDP-glucose pyrophosphorylase on trehalose and glycogen synthesis in Corynebacterium gluticum. Appl Environ Microbiol 70: 38453854.
  • Pan, Y.T., Caroll, J.D., Asano, N., Pastuszak, I., Edavana, V.K., and Elbein, A.D. (2008) Trehalose synthase converts glycogen to trehalose. FEBS J 275: 34083420.
  • Purvis, J.E., Yomana, L.P., and Ingram, L.O. (2005) Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl Environ Microbiol 71: 37613769.
  • Rajvanshi, M., and Venkatesh, K.V. (2011) Phenotypic characterization of Corynebacterium glutamicum under osmotic stress conditions using elementary mode analysis. J Ind Microbiol Biotechnol 38: 13451347.
  • Ruhal, R., and Choudhury, B. (2012a) Use of an osmotically sensitive mutant of Propionibacterium freudenreichii subspp. shermanii for the simultaneous productions of organic acids and trehalose from biodiesel waste based crude glycerol. Bioresour Technol 109: 131139.
  • Ruhal, R., and Choudhury, B. (2012b) Improved trehalose production from biodiesel waste using parent and osmotically sensitive mutant of Propionibacterium freudenreichii subsp. shermanii under aerobic conditions. J Ind Microbiol Biotechnol 39: 11531160.
  • Ruhal, R., Aggarwal, S., and Choudhury, B. (2011) Suitability of crude glycerol obtained from biodiesel waste for the production of trehalose and propionic acid. Green Chem 13: 34923498.
  • Ruis, H., and Schuller, C. (1995) Stress signaling in yeast. Bioessays 17: 959965.
  • Schiraldi, C., Di Lernia, I., and De Rosa, M. (2002) Trehalose production exploiting novel approaches. Trends Biotechnol 20: 420425.
  • Seibold, G., and Eikmann, J.B. (2007) The glgX gene product of Corynebacterium glutamicum is required for glycogen degradation and for fast adaptation to hyperosmotic stress. Microbiology 153: 22122220.
  • Seibold, G., Dempf, S., Schreiner, J., and Eikmann, J.B. (2007) Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology 153: 12751285.
  • Strøm, A.R., and Kaasen, I. (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8: 205210.
  • Thierry, A., Deutsch, S-M., Falentin, H., Dalmasso, M., Cousin, F.J., Jan, G. (2011) New insights into physiology and metabolism of Propionibacterium freudenreichii. Int J Food Microbiol 149: 1827.
  • Torino, M.I., Mozzi, F., and Valdez, G.F. (2005) Exopolysaccharide biosynthesis by Lactobacillus helveticus ATCC 15807. Appl Microbiol Biotechnol 68: 259265.
  • Truper, H.G., and Galinski, E.A. (1990) Biosynthesis and fate of compatible solutes in extremely halophilic phototrophic eubacteria. FEMS Microbiol Rev 75: 247254.
  • Tzvetkov, M., Klopprogge, C., Zelder, O., and Liebl, W. (2003) Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology 149: 16591673.
  • Varela, C.A., Baez, M.E., and Agosin, E. (2004) Osmotic stress response: quantification of cell maintenance and metabolic fluxes in a lysine-overproducing strain of Corynebacterium glutamicum. Appl Environ Microbiol 70: 42224229.
  • Velasco, S.E., yebra, M.J., Monedero, V., Ibarburu, I., Duenas, M.T., and Irastorza, A. (2007) Influence of the carbohydrate source on β-glucan production and enzyme activities involved in sugar metabolism in Pediococcus parvulus 2.6. Int J Food Microbiol 115: 325334.
  • Voit, E.O. (2003) Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. J Theor Biol 223: 5578.
  • Wiitmann, C., and Heinzle, E. (2002) Genealogy profiling through strain improvement by using metabolicnetwork analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria. Appl Environ Microbiol 68: 58435859.
  • Wolf, A., Kramer, R., and Morbach, S. (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49: 11191134.
  • Woo, H.M., Noack, S., Seibold, G.M., Willbold, S., Eikmanns, B.J., and Bott, M. (2010) Link between Phosphate Starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics. Appl Environ Microbiol 76: 69106919.
  • Zancan, P., and Sola-Penna, M. (2005) Trehalose and glycerol stabilize and renature yeast inorganic pyrophosphatase inactivated by very high temperatures. Arch Biochem Biophy 444: 5260.
  • Zhang, R., Pan, Y.T., He, S., Lam, M., Brayer, G.D., Elbein, A.D., and Withers, S.G. (2011) Mechanistic analysis of trehalose synthase from Mycobacterium smegmtis. J Biol Chem 286: 3560135609.