SEARCH

SEARCH BY CITATION

References

  • Alberty, R. (2006) Relations between biochemical thermodynamics and biochemical kinetics. Biophys Chem 124: 1117.
  • Alberty, R., and Massey, V. (1954) On the interpretation of the pH variation of the maximum initial velocity of an enzymecatalyzed reaction. Biochim Biophys Acta 13: 347353.
  • Andersch, W., Bahl, H., and Gottschalk, G. (1983) Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum. Appl Microbiol Biotechnol 18: 327332.
  • Bahl, H., Andersch, W., and Gottschalk, G. (1982) Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. Appl Microbiol Biotechnol 15: 201205.
  • Bennett, G., and Rudolph, F. (1995) The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum. FEMS Microbiol Rev 17: 241249.
  • Bisswanger, H. (2002) Enzyme Kinetics: Principles and Methods. Weinheim: Wiley-VCH.
  • Cornish-Bowden, A. (1976) Estimation of the dissociation constants of enzyme–substrate complexes from steady-state measurements. Interpretation of pH-independence of Km. Biochem J 153: 455461.
  • Cornish-Bowden, A. (2004) Fundamentals of Enzyme Kinetics, 3rd edn. London: Portland Press.
  • Desai, R., Harris, L., Welker, N., and Papoutsakis, E. (1999) Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab Eng 1: 206213.
  • Dixon, H. (1973) Shapes of curves of pH-dependence of reactions. Biochem J 131: 149154.
  • Dixon, H., Brocklehurst, K., and Tipton, K. (1987) pH-activity curves for enzyme-catalysed reactions in which the hydron is a product or reactant. Biochem J 248: 573578.
  • Dürre, P. (ed.) (2005) Formation of solvents in clostridia. In Handbook on Clostridia. Boca Raton: Taylor & Francis, pp. 671693.
  • Dürre, P., Fischer, R.-J., Kuhn, A., Lorenz, K., Schreiber, W., Stürzenhofecker, B., et al. (1995) Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol Rev 17: 251262.
  • Fiedler, T., Mix, M., Meyer, U., Mikkat, S., Glocker, M., Bahl, H., and Fischer, R.-J. (2008) The two-component system PhoPR of Clostridium acetobutylicum is involved in phosphate-dependent gene regulation. J Bacteriol 190: 65596567.
  • Fischer, R.-J., Oehmcke, S., Meyer, U., Mix, M., Schwarz, K., Fiedler, T., and Bahl, H. (2006) Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J Bacteriol 188: 54695478.
  • Fontaine, L., Meynial-Salles, I., Girbal, L., Yang, X., Croux, C., and Soucaille, P. (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184: 821830.
  • Goldbeter, A., and Koshland, D., Jr (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78: 68406844.
  • Gottwald, M., and Gottschalk, G. (1985) The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch Microbiol 143: 4246.
  • Green, E. (2011) Fermentative production of butanol – the industrial perspective. Curr Opin Biotechnol 22: 337343.
  • Grimmler, C., Janssen, H., Krauße, D., Fischer, R.-J., Bahl, H., Dürre, P., et al. (2011) Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. J Mol Microbiol Biotechnol 20: 115.
  • Grupe, H., and Gottschalk, G. (1992) Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl Environ Microbiol 58: 38963902.
  • Güell, M., van Noort, V., Yus, E., Chen, W.-H., Leigh-Bell, J., Michalodimitrakis, K., et al. (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326: 12681271.
  • Güell, M., Yus, E., Lluch-Senar, M., and Serrano, L. (2011) Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat Rev Microbiol 9: 658669.
  • Hartmanis, M., and Gatenbeck, S. (1984) Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol 47: 12771283.
  • Hartmanis, M., Klason, T., and Gatenbeck, S. (1984) Uptake and activation of acetate and butyrate in Clostridium acetobutylicum. Appl Microbiol Biotechnol 20: 6671.
  • Haus, S., Jabbari, S., Millat, T., Janssen, H., Fischer, R.-J., Bahl, H., et al. (2011) A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture. BMC Syst Biol 5: 10.
  • Ho, M.-C., Menetret, J.-F., Tsuruta, H., and Allen, K. (2009) The origin of the electrostatic perturbation in acetoacetate decarboxylase. Nature 459: 393397.
  • Hoskisson, P., and Hobbs, G. (2005) Continuous culture – making a comeback? Microbiology 151: 31533159.
  • Huang, L., Gibbins, L.N., and Forsberg, C.W. (1985) Transmembrane pH gradient and membrane potential in Clostridium acetobutylicum during growth under acetogenic and solventogenic conditions. Appl Environ Microbiol 50: 10431047.
  • Jang, Y.-S., Lee, J., Malaviya, A., Seung, D.Y., Cho, J.H., and Lee, Y.Y. (2012) Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J 7: 186198.
  • Janssen, H., Döring, C., Ehrenreich, A., Voigt, B., Hecker, M., Bahl, H., and Fischer, R.-J. (2010) A proteomic and transcriptional view of acidogenesis and solventogenesis in Clostridium acetobutylicum in a chemostat culture. Appl Microbiol Biotechnol 87: 22092226.
  • Janssen, H., Grimmler, C., Ehrenreich, A., Bahl, H., and Fischer, R.-J. (2012) A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum – solvent stress caused by a transient n-butanol pulse. J Biotechnol 161: 354365.
  • Jones, D., and Woods, D. (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50: 484524.
  • Kühner, S., van Noort, V., Betts, M., Leo-Macias, A., Batisse, C., Rode, M., et al. (2009) Proteome organization in a genome-reduced bacterium. Science 326: 12351240.
  • Lee, J., Yun, H., Feist, A., Palsson, B., and Lee, S. (2008a) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 80: 849862.
  • Lee, S., Park, J., Jang, S., Nielsen, L., Kim, J., and Jung, K. (2008b) Fermentative butanol production by clostridia. Biotechnol Bioeng 101: 209228.
  • Lütke-Eversloh, T., and Bahl, H. (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22: 634647.
  • McAnulty, M., Yen, J., Freedman, B., and Senger, R. (2012) Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC Syst Biol 6: 42.
  • Maier, T., Güell, M., and Serrano, L. (2009) Correlation of mRNA and protein in complex biological systems. FEBS Lett 583: 39663973.
  • Michaelis, L. (1922) Die Wasserstoffionenkonzentration. Berlin, Germany: Springer.
  • Millat, T., Bullinger, E., Rohwer, J., and Wolkenhauer, O. (2007) Approximations and their consequences for dynamic modelling of signal transduction pathways. Math Biosci 207: 4057.
  • Milne, C., Eddy, J., Raju, R., Ardekani, S., Kim, P.-J., Senger, R., et al. (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol 5: 130.
  • Papoutsakis, E. (1984) Equations and calculations for fermentations of butyric acid bacteria. Biotechnol Bioeng 26: 174187.
  • Papoutsakis, E. (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19: 420429.
  • Petersen, D., and Bennett, G. (1990) Purification of acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli. Appl Environ Microbiol 56: 34913498.
  • Petersen, D., Welch, R., Rudolph, F., and Bennett, G. (1991) Molecular cloning of an alcohol (butanol) dehydrogenase gene cluster from Clostridium acetobutylicum ATCC 824. J Bacteriol 173: 18311834.
  • Segel, I. (1993) Enzyme Kinetics. New York, USA: John Wiley and Sons.
  • Senger, R.S., and Papoutsakis, E.T. (2008a) Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101: 10361052.
  • Senger, R.S., and Papoutsakis, E.T. (2008b) Genome-scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol Bioeng 101: 10531071.
  • Shinto, H., Tashiro, Y., Yamashita, M., Kobayashi, G., Sekiguchi, T., Hanai, T., et al. (2007) Kinetic modeling and sensitivity analysis of acetone–butanol–ethanol production. J Biotechnol 131: 4556.
  • Tangney, M., and Mitchell, W. (2007) Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824. Appl Microbiol Biotechnol 74: 398405.
  • Tyson, J., Chen, K., and Novak, B. (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signalling pathways in the cell. Curr Opin Cell Biol 15: 221231.
  • Waley, S. (1953) Some aspects of the kinetics of enzymic reactions. Biochim Biophys Acta 10: 2734.
  • Walter, K., Bennett, G., and Papoutsakis, E. (1992) Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes. J Bacteriol 174: 71497158.
  • Wiesenborn, D., Rudolph, F., and Papoutsakis, E. (1989a) Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids. Appl Environ Microbiol 55: 323329.
  • Wiesenborn, D., Rudolph, F., and Papoutsakis, E. (1989b) Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis. Appl Environ Microbiol 55: 317322.