SEARCH

SEARCH BY CITATION

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.
  • April, T.M., Abbott, S.P., Foght, J.M., and Currah, R.S. (1998) Degradation of hydrocarbons in crude oil by the Ascomycete Pseudallescheria boydii (Microascaceae). Can J Microbiol 44: 270278.
  • Ayala, M., Hernández-López, E.L., Perezgasga, L., and Vázquez-Duhalt, R. (2012) Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil. Fuel 92: 245249.
  • Chaillan, F., Fleche, A., Bury, E., Phantavong, Y., Grimont, P., Saliot, A., and Oudot, J. (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155: 587595.
  • Chen, H.Y., Xue, D.S., Feng, X.Y., and Yao, S.J. (2011) Screening and production of ligninolytic enzyme by a marine-derived fungal Pestalotiopsis sp. J63. Appl Biochem Biotechnol 165: 17541769.
  • Dávila, A., and Vázquez-Duhalt, R. (2006) Enzimas ligninolíticas fúngicas para fines ambientales. Mensaje Bioquímico 30: 2955.
  • Davis, J.S., and Westlake, D.W.S. (1979) Crude oil utilization by fungi. J Microbiol 25: 146156.
  • Di Rienzo, J.A., Guzmán, A.W., and Casanoves, F. (2002) A multiple comparisons method based on the distribution of the root node distance of a binary tree. J Agric Biol Environ Stat 7: 114.
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., González, L., Tablada, M., and Robledo, C.W. (2010) InfoStat Versión 2010. Córdoba, Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba.
  • Fedorak, P.M., Semple, K.M., Vázquez-Duhalt, R., and Westlake, D.W.S. (1993) Chloroperoxidase mediated modifications of petroporphyrins and asphaltenes. Enzyme Microb Technol 15: 429437.
  • Fish, R.H., Komlenic, J.J., and Wines, B.K. (1984) Characterization and comparison of vanadyl and nickel compounds in heavy crude petroleums and asphaltenes by reverse-phase and size-exclusion liquid chromatography/graphite furnace atomic absorption. Anal Chem 56: 24522460.
  • Foght, J.M. (2004) Whole-cell bio-processing of aromatic compounds in crude oil and fuels. In Petroleum Biotechnology: Developments and Perspectives. Vázquez-Duhalt, R. , and Quintero-Ramirez, R. (eds). Amsterdam, the Netherlands: Elsevier Science, pp. 145175.
  • García-Arellano, H., Buenrostro-Gonzalez, E., and Vázquez-Duhalt, R. (2004) Biocatalytic transformation of petroporphyrins by chemical modified cytochrome c. Biotechnol Bioeng 85: 790798.
  • Gianfreda, L., and Rao, M. (2004) Potential of extracellular enzymes in remediation of polluted soil: a review. Enzyme Microb Technol 35: 339354.
  • Gianfreda, L., Xu, F., and Bollag, J.M. (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremed J 3: 125.
  • Hao, J.J., Tian, X.J., Song, F.Q., He, X.B., Zhang, Z.J., and Zhang, P. (2006) Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest. J Eukaryot Microbiol 53: 193198.
  • Hughes, K.A., Bridge, P., and Clark, M.S. (2007) Tolerance of Antarctic soil fungi to hydrocarbons. Sci Total Environ 372: 539548.
  • Husaini, A., Roslan, H.A., Hii, K.S.Y., and Ang, C.H. (2008) Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World J Microbiol Biotechnol 24: 27892797.
  • Kim, M.J., Lee, H., Choi, Y.S., Kim, G.H., Huh, N.Y., Lee, S., et al. (2010) Diversity of fungi in creosote-treated crosstie wastes and their resistance to polycyclic aromatic hydrocarbons. Antonie Van Leeuwenhoek 97: 377387.
  • Kunamneni, A., Ballesteros, A., Plou, F.J., and Alcalde, M. (2007) Fungal laccase, a versatile enzyme for biotechnological applications. In Communicating Current Research and Educational Topics and Trends in Applied Microbiology. Méndez-Vilas, A. (ed.). Badajoz, Spain: Formex, pp. 233245.
  • León, V., and Kumar, M. (2005) Biological upgrading of heavy crude oil. Biotechnol Bioprocess Eng 10: 471481.
  • León, Y., De Sisto, A., Inojosa, Y., Malaver, N., and Naranjo-Briceño, L. (2009) Identificación de biocatalizadores potenciales para la remediación de desechos petrolizados de la Faja Petrolífera del Orinoco (2009). RET 1: 1225.
  • Luis, P., Walthera, G., Kellnera, H., Martinb, F., and Buscot, F. (2004) Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biol Biochem 36: 10251036.
  • Maharachchikumbura, S.S.N., Guo, L.-D., Chukeatirote, E., Bahkali, A.H., and Hyde, K.D. (2011) Pestalotiopsis – morphology, phylogeny, biochemistry and diversity. Fungal Divers 50: 167187.
  • Martínez, A.T., Speranza, M., Ruiz-Dueñas, F.J., Ferreira, P., Camarero, S., Guillén, F., et al. (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8: 195204.
  • Martínez, M.J., Ruiz-Dueñas, F.J., Guillén, F., and Martínez, A.T. (1996) Purification and catalytic properties of two manganese-peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237: 424432.
  • Meysami, P., and Baheri, H. (2003) Pre-screening of fungi and bulking agents for contaminated soil bioremediation. Adv Environ Res 7: 881887.
  • Naranjo, L., Martín de Valmaseda, E., Bañuelos, O., López, P., Riaño, J., Casqueiro, J., and Martín, J.F. (2001) The conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase. J Bacteriol 183: 71657172.
  • Naranjo, L., Martín de Valmaseda, E., Casqueiro, J., Ullán, R.V., Lamas, M., Bañuelos, O., and Martín, J.F. (2004) Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from α-aminoadipic acid. Appl Environ Microbiol 70: 10311039.
  • Naranjo, L., Urbina, H., De Sisto, A., and León, V. (2007) Isolation of autochthonous non-white rot fungi with potential for enzymatic upgrading of Venezuelan extra-heavy crude oil. Biocatal Biotransformation 25: 19.
  • Otterbein, L., Record, E., Longhi, S., Asther, M., and Moukha, S. (2000) Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris. Eur J Biochem 267: 16191625.
  • Oudot, J.P., Dupont, J., Haloui, S., and Roquebert, M.F. (1993) Biodegradation potential of hydrocarbon-degrading fungi in tropical soil. Soil Biol Biochem 25: 11671173.
  • Papinutti, V., Diorio, L., and Forchiassin, F. (2003) Degradación de madera de álamo por Fomes sclerodermeus; producción de enzimas ligninolíticas en aserrín de álamo y cedro. Rev Iberoam Micol 20: 1620.
  • Pearson, W., and Lipman, D. (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85: 24442448.
  • Pernía, B., Demey, J.R., Inojosa, Y., and Naranjo-Briceño, L. (2012) Biodiversidad y potencial hidrocarbonoclástico de hongos aislados de crudo y sus derivados: un meta-análisis. Rev Latinoam Biotecnol Amb Algal 3: 140.
  • Ruiz-Dueñas, F.J., Martínez, M.J., and Martínez, A.T. (1999) Molecular characterization of a novel peroxidase isolated from the lignolytic fungus Pleurotus eryngii. Mol Microbiol 31: 223235.
  • Russell, J.R., Huang, J., Anand, P., Kucera, K., Sandoval, A.G., Dantzler, K.W., et al. (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77: 60766084.
  • Salas, C., Lobos, S., Larrain, J., Salas, L., Cullen, D., and Vicuna, R. (1995) Properties of laccase isoenzymes produced by the basidiomycete Ceriporiopsis subvermispora. Biotechnol Appl Biochem 21: 323333.
  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.
  • Saparrat, M.C., and Hammer, E. (2006) Decolorization of synthetic dyes by the deuteromycete Pestalotiopsis guepinii CLPS no. 786 strain. J Basic Microbiol 46: 2833.
  • Saparrat, M.C., Guillen, F., Arambarri, A., Martínez, A., and Martínez, M. (2002) Induction, isolation, and characterization of two laccases from the with rot basidiomycete Coriolopsis rigida. Appl Environ Microbiol 68: 15341540.
  • Strauz, O.P., Mojelsky, T.W., and Lown, E.M. (1992) The molecular structure of asphaltenes: an unfolding story. Fuel 71: 13551363.
  • Troller, J., Smith, J., Leisola, M., Kallen, J., Winterhalter, K., and Fiechter, A. (1988) Crystallization of a lignin peroxidase from the white-rot fungus Phanerochaete chrysosporium. Bio Technol 6: 571573.
  • Uribe-Álvarez, C., Ayala, M., Perezgasga, L., Naranjo, L., Urbina, H., and Vázquez-Duhalt, R. (2011) First evidence of mineralization of petroleum asphaltenes by a strain of Neosartorya fischeri. Microb Biotechnol 4: 663672.
  • Waldo, G.S., Carlson, R.M.K., Moldowan, J.M., Peters, K.E., and Penner-Hahn, J.E. (1991) Sulfur speciation in heavy petroleums: information from X-ray absorption near-edge structure. Geochim Cosmochim Acta 55: 801814.
  • Yang, X.-L., Zhang, J.-Z., and Luo, D.-Q. (2012) The taxonomy, biology and chemistry of the fungal Pestalotiopsis genus. Nat Prod Rep 29: 622.