SEARCH

SEARCH BY CITATION

References

  • Ausec, L., Zakrzewski, M., Goesmann, A., Schlüter, A., and Mandic-Mulec, I. (2011) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS ONE 6: e25724.
  • Baldrian, P. (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30: 215242.
  • Beloqui, A., Pita, M., Polaina, J., Martínez-Arias, A., Golyshina, O.V., Zumárraga, M., et al. (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties and structural analysis. J Biol Chem 281: 2293322942.
  • Brouwers, G.J., de Vrind, J.P., Corstjens, P.L., Cornelis, P., Baysse, C., and de Vrind-de Jong, E.W. (1999) cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 65: 17621768.
  • Brown, G., Singer, A., Proudfoot, M., Skarina, T., Kim, Y., Chang, C., et al. (2008) Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis. Biochemistry 47: 57245735.
  • Bugg, T.D., Ahmad, M., Hardiman, E.M., and Singh, R. (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22: 394400.
  • Bursy, J., Kuhlmann, A.U., Pittelkow, M., Hartmann, H., Jebbar, M., Pierik, A.J., and Bremer, E. (2008) Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 74: 72867296.
  • Camarero, S., Ibarra, D., Martínez, A., Romero, J., Gutiérrez, A., and del Río, J. (2007) Paper pulp delignification using laccase and natural mediators. Enz Microb Tech 40: 12641271.
  • Cañas, A.I., and Camarero, S. (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28: 694705.
  • Camarero, S., Cañas, A.I., Nousiainen, P., Record, E., Lomascolo, A., Martinez, M.J., and Martinez, A.T. (2008) p-Hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds. Environ Sci Technol 42: 67036709.
  • Claus, H. (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179: 145150.
  • Desentis-Mendoza, R.M., Hernández-Sánchez, H., Moreno, A., Rojas del, C.E., Chel-Guerrero, L., Tamariz, J., and Jaramillo-Flores, M.E. (2006) Enzymatic polymerization of phenolic compounds using laccase and tyrosinase from Ustilago maydis. Biomacromolecules 7: 18451854.
  • Durão, P., Bento, I., Fernandes, A.T., Melo, E.P., Lindley, P.F., and Martins, L.O. (2006) Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. J Biol Inorg Chem 11: 514526.
  • Durão, P., Chen, Z., Fernandes, A., Hildebrandt, P., Murgida, D., Todorovic, S., et al. (2008a) Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. J Biol Inorg Chem 13: 183193.
  • Durão, P., Chen, Z., Silva, C.S., Soares, C.M., Pereira, M.M., Todorovic, S., et al. (2008b) Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. Biochem J 412: 339346.
  • Endo, K., Hayashi, Y., Hibi, T., Hosono, K., Beppu, T., and Ueda, K. (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem 133: 671677.
  • Enguita, F.J., Martins, L.O., Henriques, A.O., and Carrondo, M.A. (2003) Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 278: 1941619425.
  • Ferrer, M., Beloqui, A., and Golyshin, P.N. (2010) Screening metagenomic libraries for laccase activities. Methods Mol Biol 668: 189202.
  • Galli, I., Musci, G., and Bonaccorsi di Patti, M.C. (2004) Sequential reconstitution of copper sites in the multicopper oxidase CueO. J Biol Inorg Chem 9: 9095.
  • Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., and Sannia, G. (2010) Laccases: a never-ending story. Cell Mol Life Sci 67: 369385.
  • Grass, G., and Rensing, C. (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286: 902908.
  • Gupta, A., Nederlof, I., Sottini, S., Tepper, A.W., Groenen, E.J., Thomassen, E.A., and Canters, G.W. (2012) Role of Tyr108 in the enzyme mechanism of the small laccase from Streptomyces coelicolor. J Am Chem Soc 134: 1821318216.
  • Hildén, K., Hakala, T.K., and Lundell, T. (2009) Thermotolerant and thermostable laccases. Biotechnol Lett 31: 11171128.
  • Högbom, M., Ericsson, U.B., Lam, R., Bakali, H.M.A., Kuznetsova, E., Nordlund, P., and Zamble, D.B. (2005) A high throughput method for the detection of metalloproteins on a microgram scale. Mol Cell Proteomics 4: 827834.
  • Huffman, D.L., Huyett, J., Outten, F.W., Doan, P.E., Finney, L.A., Hoffman, B.M., and O'Halloran, T.V. (2002) Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon. Biochemistry 41: 1004610055.
  • Hullo, M.F., Moszer, I., Danchin, A., and Martin-Verstraete, I. (2001) CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183: 54265430.
  • Ichiba, T., Shibasaki, T., Iizuka, E., and Hachimori, A. (1988) Cation-induced thermostability of yeast and Escherichia coli pyrophosphatases. Biochem Cell Biol 66: 2531.
  • Jeon, J.-R., Baldrian, P., Murugesan, K., and Chang, Y.-S. (2012) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 5: 318332.
  • Johannes, C., and Majcherczyk, A. (2000) Laccase activity tests and laccase inhibitors. J Biotechnol 78: 193199.
  • Jørgensen, L.V., and Skibsted, L.H. (1998) Flavonoid deactivation of ferrylmyoglobin in relation to ease of oxidation as determined by cyclic voltammetry. Free Radic Res 28: 335351.
  • Kellner, H., Luis, P., Zimdars, B., Kieseld, B., and Buscot, F. (2008) Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland Cambisol soil samples. Soil Biol Biochem 40: 638648.
  • Kim, C., Lorenz, W.W., Hoopes, J.T., and Dean, J.F. (2001) Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol 183: 48664875.
  • Kunamneni, A., Camarero, S., Garcia-Burgos, C., Plou, F.J., Ballesteros, A., and Alcalde, M. (2008) Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact 7: 32.
  • Laufer, Z., Beckett, R.P., and Minibayeva, F.V. (2006) Co-occurrence of the multicopper oxidases tyrosinase and laccase in lichens in sub-order peltigerineae. Ann Bot 98: 10351042.
  • Lawton, T.J., Sayavedra-Soto, L.A., Arp, D.J., and Rosenzweig, A.C. (2009) Crystal structure of a two-domain multicopper oxidase: implications for multicopper blue proteins. J Biol Chem 284: 1017410180.
  • Li, X., Wei, Z., Zhang, M., Peng, X., Yu, G., Teng, M., and Gong, W. (2007) Crystal structures of E. coli laccase CueO at different copper concentrations. Biochem Biophys Res Commun 354: 2126.
  • Machczynski, M.C., Vijgenboom, E., Samyn, B., and Canters, G.W. (2004) Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci 13: 23882397.
  • Martins, L.O., Soares, C.M., Pereira, M.M., Teixeira, M., Costa, T., Jones, G.H., and Henriques, A.O. (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277: 1884918859.
  • Mayer, A.M., and Staples, R.C. (2002) Laccase: new functions for an old enzyme. Phytochemistry 60: 551565.
  • Mikolasch, A., and Schauer, F. (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82: 605624.
  • Mohammadian, M., Fathi-Roudsari, M., Mollania, N., Badoei-Dalfard, A., and Khajeh, K. (2010) Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol 37: 863869.
  • Nakamura, K., and Go, N. (2005) Function and molecular diversity of multicopper blue proteins. Cell Mol Life Sci 62: 20502066.
  • Ponzoni, C., Beneventi, E., Cramarossa, M.R., Raimondi, S., Trevisi, G., Pagnoni, U.M., et al. (2007) Laccase-catalyzed dimerization of hydroxystilbenes. Adv Synth Catal 349: 14971506.
  • Riva, S. (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24: 219226.
  • Rodriguez Couto, S., and Toca Herrera, J.L. (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24: 500513.
  • Santhanam, N., Vivanco, J.M., Decker, S.R., and Reardon, K.F. (2011) Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol 29: 480489.
  • Skálová, T., Dohnálek, J., Østergaard, L.H., Østergaard, P.R., Kolenko, P., Dusková, J., et al. (2009) The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases. J Mol Biol 385: 11651178.
  • Smolander, M., Boer, H., Valkiainen, M., Roozeman, R., Bergelin, M., Eriksson, J., et al. (2007) Development of a printable laccase based biocathode for fuel cell applications. Enzyme Microb Technol 43: 93102.
  • Solano, F., Lucas-Elío, P., López-Serrano, D., Fernández, E., and Sanchez-Amat, A. (2001) Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol Lett 204: 175181.
  • Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamoto, K., and Inamori, Y. (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 67: 21672175.
  • Uzan, E., Portet, B., Lubrano, C., Milesi, S., Favel, A., Lesage-Meessen, L., and Lomascolo, A. (2011) Pycnoporus laccase-mediated bioconversion of rutin to oligomers suitable for biotechnology applications. Appl Microbiol Biotechnol 90: 97105.
  • Widsten, P., and Kandelbauer, A. (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42: 293307.
  • Xu, F. (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35: 76087614.
  • Xu, F. (1997) Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem 272: 924928.
  • Xu, F., Palmer, A.E., Yaver, D.S., Berka, R.M., Gambetta, G.A., Brown, S.H., and Solomon, E.I. (1999) Targeted mutations in a Trametes villosa laccase: axial perturbations of the T1 copper. J Biol Chem 274: 1237212375.
  • Zhang, R.-G., Skarina, T., Katz, J.E., Beasley, S., Khachatryan, A., Vyas, S., et al. (2001) Structure of Thermotoga maritima stationary phase survival protein SurE: a novel acid phosphatase. Structure 9: 10951106.