SEARCH

SEARCH BY CITATION

References

  • Akagi, T., Baba, M., and Akashi, M. (2007) Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. Polymer 48: 67296747.
  • Aligiannis, N., Kalpotzakis, E., Mitaku, S., and Chinou, I.B. (2001) Composition and antimicrobial activity of the essential oils of two Origanum species. J Agri Food Chem 40: 41684170.
  • Aono, R. (1987) Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp. C-125. Biochem J 245: 467472.
  • Ashiuchi, M. (2010) Occurrence and biosynthetic mechanism of poly-γ-glutamic acid. In Microbiol Monogr (Amino-Acid Homopolymers Occurring in Nature). Vol. 15. Hamano, Y. (ed.). Heidelberg, Germany: Springer-Verlag, pp. 7794.
  • Ashiuchi, M. (2011) Analytical approaches to poly-γ-glutamate: rapid quantification, molecular size determination, and stereochemistry investigation. J Chromatogr B 879: 30963101.
  • Ashiuchi, M., and Misono, H. (2002) Poly-γ-glutamic acid. In Biopolymers. Vol. 7. (chap. 6), Fahnestock, S.R. , and Steinbüchel, A. (eds). Weinheim, Germany: Wiley-VCH, pp. 123174.
  • Ashiuchi, M., Soda, K., and Misono, H. (1999) A poly-γ-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells. Biochem Biophys Res Commun 263: 612.
  • Ashiuchi, M., Kamei, T., Baek, D.H., Shin, S.Y., Sung, M.H., Soda, K., et al. (2001a) Isolation of Bacillus subtilis (chungkookjang), a poly-γ-glutamate producer with high genetic competence. Appl Microbiol Biotechnol 57: 764769.
  • Ashiuchi, M., Nawa, C., Kamei, T., Song, J.J., Hong, S.P., Sung, M.H., et al. (2001b) Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of Bacillus subtilis. Eur J Biochem 268: 53215328.
  • Ashiuchi, M., Shimanouchi, K., Nakamura, H., Kamei, T., Soda, K., Park, C., et al. (2004) Enzymatic synthesis of high-molecular-mass poly-γ-glutamate and regulation of its stereochemistry. Appl Environ Microbiol 70: 42494255.
  • Ashiuchi, M., Nakamura, H., Yamamoto, M., and Misono, H. (2006) Novel poly-γ-glutamate-processing enzyme catalyzing γ-glutamyl DD-amidohydrolysis. J Biosci Bioeng 102: 6065.
  • Ashiuchi, M., Fukushima, F., Oya, H., Hiraoki, T., Shibatani, S., Oka, N., et al. (2013a) Development of antimicrobial thermoplastic material from archaeal poly-γ-L-glutamate and its nanofabrication. ACS Appl Mater Interfaces 5: 16191624.
  • Ashiuchi, M., Yamamoto, T., and Kamei, T. (2013b) Pivotal enzyme in glutamate metabolism of poly-γ-glutamate-producing microbes. Life (Basel, Switzerland) 3: 181188.
  • Ashiuchi, M., Yamashiro, D., and Yamamoto, K. (2013c) Bacillus subtilis EdmS (formerly PgsE) participates in the maintenance of episomes. Plasmid (in press). doi: 10.1016/j.plasmid.2013.03.008
  • Bajaj, I., and Singhal, R. (2011) Poly (glutamic acid) – An emerging biopolymer of commercial interest. Bioresour Technol 102: 55515561.
  • Bhattacharyya, D., Hestekin, J.A., Brushaber, P., Cullen, L., Bachas, L.G., and Sikder, S.K. (1998) Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. J Membr Sci 141: 121135.
  • Birrer, G.A., Cromwick, A.M., and Gross, R.A. (1994) γ-Poly(glutamic acid) formation by Bacillus licheniformis 9945A: physiological and biochemical studies. Int J Biol Macromol 16: 265275.
  • Calderone, R. (2002) Introduction and historical perspectives. In Candida and Candidiasis. Calderone, R. (ed.). Washington, DC, USA: ASM Press, pp. 1525.
  • Candela, T., and Fouet, A. (2006) Poly-gamma-glutamate in bacteria. Mol Microbiol 60: 10911098.
  • Candela, T., Moya, M., Haustant, M., and Fouet, A. (2009) Fusobacterium nucleatum, the first Gram-negative bacterium demonstrated to produce polyglutamate. Can J Microbiol 55: 627632.
  • Cheng, C., Asada, Y., and Aida, T. (1989) Production of γ-polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agric Biol Chem 53: 23692375.
  • Choi, H.J., and Kunioka, M. (1995) Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradiation from microbial poly γ-glutamic acid. Radiat Phys Chem 46: 175179.
  • Cromwick, A.M., and Gross, R.A. (1995) Effect of manganese (II) on Bacillus licheniformis ATCC9945A: physiology and γ-poly(glutamic acid)formation. Int J Biol Macromol 17: 259267.
  • Dearfield, K.L., and Abermathy, C.O. (1988) Acrylamide: its metabolism, development and reproductive effects, genotoxicity, and carcinogenicity. Mutant Res 195: 4577.
  • Dekie, L., Toncheve, V., Dubruel, P., Schacht, E.H., Baarrett, L., and Seymour, L.W. (2000) Poly-l-glutamic acid derivatives as vectors for gene therapy. J Control Release 65: 187202.
  • Eppinger, M., Bunk, B., Johns, M.A., Edirisinghe, J.N., Kutumbaka, K.K., Koenig, S.S.K., et al. (2011) Genome sequences of the biotechnologically important Bacillus megaterium strains QM B1551 and DSM319. J Bacteriol 193: 41994213.
  • Eveland, S.S., Pompliano, D.L., and Anderson, M.S. (1997) Conditionally lethal Escherichia coli murein mutants contain point defects that map tp regions conserved among murein and folyl poly-γ-glutamate ligases: identification of a ligase superfamily. Biochemistry (Mosc) 36: 62236229.
  • Fan, C., Moews, P.C., Shi, Y., Walsh, C.T., and Knox, J.R. (1995) A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and d-alanine:d-alanine ligase of Escherichia coli. Proc Natl Acad Sci USA 92: 11721176.
  • Galperin, M.Y., and Koonin, E.V. (1997) A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci 6: 26392643.
  • He, L.M., Neu, M.P., and Vanderberg, L.A. (2000) Bacillus licheniformis γ-glutamyl exopolymer: physicochemical characterization and U (VI) interaction. Environ Sci Technol 34: 16941701.
  • Hezayen, F.F., Rehm, B.H.A., Tindall, B.J., and Steinbüchel, A. (2001) Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int J Syst Evol Microbiol 51: 11331142.
  • Hugo, W.B., and Russell, A.D. (1982) Types of antimicrobial agents. In Principles and Practice of Disinfection, Preservation and Sterilization. Russell, A.D. , Hugo, W.B. , and Ayliffe, G.A.J. (eds). Oxford, UK: Blackwell Scientific Publication, pp. 158186.
  • Ito, Y., Tanaka, T., Ohmachi, T., and Asada, Y. (1996) Glutamic acid independent production of poly(g-glutamic acid) by Bacillus subtilis TAM-4. Biosci Biotechnol Biochem 60: 12391242.
  • Jones, D.S., Schep, L.J., and Shepherd, M.G. (1995a) The effect of cetylpyridinium chloride on the cell surface charge (zeta potential) of Candida albicans: implications for anti-adherence effects. Pham Sci 1: 513515.
  • Jones, D.S., Schep, L.J., and Shepherd, M.G. (1995b) The effect of cetylpyridinium chloride on the cell surface hydrophobicity and adherence of Candida albicans to human buccal epithelial cells in vitro. Pham Res 12: 18961900.
  • Kambourova, M., Tangney, M., and Priest, F.G. (2001) Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl Environ Microbiol 67: 10041007.
  • Kapatral, V., Anderson, I., Ivanova, N., Reznik, G., Los, T., Lykidis, A., et al. (2002) Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 184: 20052018.
  • Kenawy, E.R., Worley, S.D., and Broughton, R. (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8: 13591384.
  • Keppie, J., Harris-Smith, P.W., and Smith, H. (1963) The chemical basis of the virulence of Bacillus anthracis. IX. Its aggressins and their mode of action. Br J Exp Pathol 44: 446453.
  • Kim, K.S., Kim, T.K., and Graham, N.B. (1999) Controlled release behavior of prodrugs based on the biodegradable poly(L-glutamic acid) microspheres. Polym J 31: 813816.
  • Kinnersley, A., Strom, D., Meah, R.Y., and Koskan, C.P. (1994) Composition and method for enhanced fertilizer uptake by plants (WO patent no. 94/09,628).
  • Kino, K., Kotanaka, Y., Arai, T., and Yagasaki, M. (2009) A novel L-amino acid ligase from Bacillus subtilis NBRC3134, a microorganism producing peptide-antibiotic rhizocticin. Biosci Biotechnol Biochem 73: 901907.
  • Kishida, A., Murakami, K., Goto, H., and Akashi, M. (1998) Polymer drugs and polymeric drugs. X. Slow release of 5-fluorouracil from biodegradable poly(γ-glutamic acid) and its benzyl ester matrices. J Bioact Compat Polym 13: 270278.
  • Kocianova, S., Vuong, C., Yao, Y., Voyich, J.M., Fischer, E.R., DeLeo, F.R., et al. (2005) Key role of poly-γ-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest 115: 688694.
  • Kubota, H., Matsunobu, T., Uotani, K., Takebe, H., Satoh, A., Tanaka, T., et al. (1993) Production of poly(γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci Biotechnol Biochem 57: 12121213.
  • Kunioka, M., and Goto, A. (1994) Biosynthesis of poly(γ-glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl Microbiol Biotechnol 40: 867872.
  • Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., et al. (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 249256.
  • Lass-Flör, L. (2009) The changing face of epidemiology of invasive fungal disease in Europe. Mycoses 52: 197205.
  • Lee, N.H., and Frank, C.W. (2002) Separation of chiral molecules using polypeptide-modified poly(vinylidene fluoride) membranes. Polymer 43: 62556262.
  • Leonard, C.G., and Housewright, R.D. (1963) Polyglutamic acid synthesis by cell-free extracts of Bacillus licheniformis. Biochim Biophys Acta 73: 530532.
  • Li, C., Price, J.E., Milas, L., Hunter, N.R., Ke, S., Tansey, W., et al. (1999) Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin Cancer Res 5: 891897.
  • Liu, L., Jin, T.N., Coffin, D.R., and Hicks, K.B. (2009) Preparation of antimicrobial membranes: coextrusion of poly(lactic acid) and nisaplin in the presence of plasticizers. J Agric Food Chem 57: 83928398.
  • Mitsuiki, M., Mizuo, A., Tanimoto, H., and Motoki, M. (1998) Relationship between the antifreeze activities and the chemical structures of oligo- and poly(glutamic acid)s. J Agric Food Chem 46: 891895.
  • Niemetz, R., Kärcher, U., Kandlera, O., Tindall, B.J., and König, H. (1997) The cell wall polymer of the extremely halophilic archaeon, Natronococcus occultus. Eur J Biochem 249: 905911.
  • Ogawa, Y., Yamaguchi, F., Yuasa, K., and Tahara, Y. (1997) Efficient production of γ-polyglutamic acid by Bacillus subtilis (natto) in jar fermenters. Biosci Biotechnol Biochem 61: 16841687.
  • Otani, Y., Tabata, Y., and Ikeda, Y. (1998) Hemostatic capability of rapidly curable from gelatin, poly(L-glutamic acid), and carbodiimide. Biomaterials 19: 20912098.
  • Park, C., Choi, J.C., Choi, Y.H., Nakamura, H., Shimanouchi, K., Horiuchi, T., et al. (2005) Synthesis of super-high-molecular-weight poly-γ-glutamate from Bacillus subtilis subsp. chungkookjang. J Mol Catal B Enzym 35: 128133.
  • Pérez-Camero, G., Congregado, F., Bou, J.J., and Muñoz-Guerra, S. (1999) Biosynthesis and ultlasonic degradation of bacterial poly(γ-glutamic acid). Biotechnol Bioeng 63: 110115.
  • Petrocci, A.N. (1983) Surface-active agents: quaternary ammonium compounds. In Disinfection, Sterilization and Preservation. Block, S.S. (ed.)., 3rd edn. Philadelphia, PA, USA: Lea and Febiger, pp. 309329.
  • Pötter, M., Oppermann-Sanio, F.B., and Steinbüchel, A. (2001) Cultivation of bacteria producing polyamino acids with liquid manure as carbon and nitrogen source. Appl Environ Microbiol 67: 617622.
  • Prencipe, G., Tabakman, S.M., Welsher, K., Liu, Z., Goodwin, A.P., Zhang, L., et al. (2009) PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 131: 47834787.
  • Price, P.A. (1985) Vitamin K-dependent formation of bone Gla protein (osteocalcin) and its function. Vitam Horm 42: 65108.
  • Read, T.D., Peterson, S.N., Tourasse, N., Baillie, L.W., Ian, T., Paulsen, I.T., et al. (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423: 8186.
  • Rowinsky, K.E., and Donehower, R.C. (1995) Paclitaxel (Taxol). N Engl J Med 332: 10041014.
  • Sawamura, S. (1913) On Bacillus natto. J Coll Agric 5: 189191.
  • Schep, L.J., Jones, D.S., and Shepherd, M.G. (1995) Primary interactions of three quaternary ammonium compounds with blastospores of Candida albicans (MEN strain). Pham Res 12: 649652.
  • Schwartz, V.B., Thétiot, F., Ritz, S., Pütz, S., Choritz, L., Lappas, A., et al. (2012) Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(N-isopropylacrylamide) hydrogel surface layers. Adv Funct Mater 22: 23762386.
  • Sekine, T., Nakamura, T., Shimizu, Y., Ueda, H., Matsumoto, K., Takimoto, Y., et al. (2000) A new type of surgical adhesive made from porcine collagen and polyglutamic acid. J Biomed Mater Res 35: 305310.
  • Sheng, Y., Sun, X., Shen, Y., Bognar, A.L., Baker, E.N., and Smith, C.A. (2000) Structural and functional similarities in the ADP-forming amide bond ligase superfamily: implications for a substrate-induced conformational change in folylpolyglutamate synthetase. J Mol Biol 302: 427440.
  • Shih, I.L., and Van, Y.T. (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79: 207225.
  • Shih, I.L., Van, Y.T., Yeh, L.C., Lin, H.G., and Chang, Y.N. (2001) Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour Technol 78: 267272.
  • Shimizu, K., Nakamura, H., and Ashiuchi, M. (2007) Salt-inducible bionylon polymer from Bacillus megaterium. Appl Environ Microbiol 73: 23782379.
  • Song, J., Kang, H., Lee, C., Hwang, S.H., and Jang, J. (2012) Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity. Appl Mater Interfaces 4: 460465.
  • Spotniz, W.D. (2012) Hemostats, sealants, and adhesives: a practical guide for the surgeon. Am Surg 78: 13051321.
  • Tachaboonyakiat, W., Serizawa, T., Endo, T., and Akashi, M. (2000) The influence of molecular weight over the ultrathin films of biodegradable polyion complexes between chitosan and poly(γ-glutamic acid). Polym J 32: 481485.
  • Takami, H., Nakasone, K., Takaki, Y., Maeno, G., Sasaki, R., Masui, N., et al. (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28: 43174331.
  • Tanimoto, H., Mori, M., Motoki, M., Torii, K., Kadowaki, M., and Noguchi, T. (2001) Natto mucilage containing poly-γ-glutamic acid increases soluble calcium in the rat small intestine. Biosci Biotechnol Biochem 65: 516521.
  • Thorne, C.B., Gómez, C.G., Noyes, H.E., and Housewright, R.D. (1954) Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol 68: 307315.
  • Urushibata, Y., Tokuyama, S., and Tahara, Y. (2002) Characterization of the Bacillus subtilis ywsC gene, involved in γ-polyglutamic acid production. J Bacteriol 184: 337343.
  • Wang, N., Yang, G., Che, C., and Liu, Y. (2011) Heterogenous expression of poly-γ-glutamic acid synthetase complex gene of Bacillus licheniformis WBL-3. Appl Biochem Microbiol 47: 381385.
  • Wang, S., Cao, X., Shen, M., Guo, R., Bányal, I., and Shi, X. (2012) Fabrication and morphology control of electrospun poly(γ-glutamic acid) nanofibers for biomedical applications. Colloids Surf B 89: 254264.
  • Weber, J. (1989) Nematocysts (stinging capsules of Cnidaria) as Donnan-potential-dominated osmotic systems. Eur J Biochem 184: 465476.
  • Weber, J. (1990) Poly(γ-glutamic acid)s are the major constituents of Nematocysts in Hydra (Hydrozoa, Cnidaria). J Biol Chem 265: 96649669.
  • Yahata, K., Sadanobu, J., and Endo, T. (1992) Preparation of poly-α-benzyl-γ-polyglutamate fiber. Polym Prep Jpn 41: 1077.
  • Yamasaki, D., Minouchi, Y., and Ashiuchi, M. (2010) Extremolyte-like applicability of an archaeal exopolymer, poly-γ-L-glutamate. Environ Technol 31: 11291134.
  • Yamashiro, D., Yoshioka, M., and Ashiuchi, M. (2011) Bacillus subtilis pgsE (formerly ywtC) stimulates poly-γ-glutamate production in the presence of zinc. Biotechnol Bioeng 108: 226230.
  • Yangtse, W., Zhou, Y., Lei, Y., Qiu, Y., Wei, X., Ji, Z., et al. (2012) Genome sequence of Bacillus licheniformis WX-02. J Bacteriol 194: 35613562.
  • Yokoi, H., Natsuda, O., Hirose, J., Hayashi, S., and Takasaki, Y. (1995) Characteristics of a biopolymer flocculant produced by Bacillus sp. PY-90. J Ferment Bioeng 79: 378380.
  • Yokoi, H., Arima, T., Hirose, J., Hayashi, S., and Takasaki, Y. (1996) Flocculation properties of poly(γ-glutamic acid) produced by Bacillus subtilis. J Ferment Bioeng 82: 8487.
  • Zhang, Y.Q., Ren, S.X., Li, H.L., Wang, Y.X., Fu, G., Yang, J., et al. (2003) Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49: 15771593.