SEARCH

SEARCH BY CITATION

References

  • Albrecht, M.T., and Schiller, N.L. (2005) Alginate lyase (AlgL) activity is required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol 187: 38693872.
  • Amikam, D., and Galperin, M.Y. (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22: 36.
  • Andersen, T., Strand, B.L., Formo, K., Alsberg, E., and Christensen, B.E. (2012) Alginates as biomaterials in tissue engineering. In Carbohydrate Chemistry: Chemical and Biological Approaches. Vol. 37. Rauter, A.P. (ed.). Cambridge, UK: The Royal Society of Chemistry, pp. 227258.
  • Bakkevig, K., Sletta, H., Gimmestad, M., Aune, R., Ertesvag, H., Degnes, K., et al. (2005) Role of the Pseudomonas fluorescens alginate lyase (AlgL) in clearing the periplasm of alginates not exported to the extracellular environment. J Bacteriol 187: 83758384.
  • Baynham, P.J., and Wozniak, D.J. (1996) Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol Microbiol 22: 97108.
  • Baynham, P.J., Brown, A.L., Hall, L.L., and Wozniak, D.J. (1999) Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activation. Mol Microbiol 33: 10691080.
  • Baynham, P.J., Ramsey, D.M., Gvozdyev, B.V., Cordonnier, E.M., and Wozniak, D.J. (2006) The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J Bacteriol 188: 132140.
  • Boucher, J.C., Schurr, M.J., Yu, H., Rowen, D.W., and Deretic, V. (1997a) Pseudomonas aeruginosa in cystic fibrosis: role of mucC in the regulation of alginate production and stress sensitivity. Microbiology 143 (Pt 11): 34733480.
  • Boucher, J.C., Yu, H., Mudd, M.H., and Deretic, V. (1997b) Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 65: 38383846.
  • Cezairliyan, B.O., and Sauer, R.T. (2009) Control of Pseudomonas aeruginosa AlgW protease cleavage of MucA by peptide signals and MucB. Mol Microbiol 72: 368379.
  • Chitnis, C.E., and Ohman, D.E. (1993) Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8: 583593.
  • Ciofu, O., Lee, B., Johannesson, M., Hermansen, N.O., Meyer, P., and Hoiby, N. (2008) Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertants. Microbiology 154: 103113.
  • Damron, F.H., and Yu, H.D. (2011) Pseudomonas aeruginosa MucD regulates the alginate pathway through activation of MucA degradation via MucP proteolytic activity. J Bacteriol 193: 286291.
  • Deretic, V., Schurr, M.J., Boucher, J.C., and Martin, D.W. (1994) Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J Bacteriol 176: 27732780.
  • Diaz-Barrera, A., Silva, P., Berrios, J., and Acevedo, F. (2010) Manipulating the molecular weight of alginate produced by Azotobacter vinelandii in continuous cultures. Bioresour Technol 101: 94059408.
  • Diaz-Barrera, A., Soto, E., and Altamirano, C. (2012) Alginate production and alg8 gene expression by Azotobacter vinelandii in continuous cultures. J Ind Microbiol Biotechnol 39: 613621.
  • Donati, I., and Paoletti, S. (2009) Material properties of alginates. In Alginates: Biology and Applications. Rehm, B.H.A. (ed.). Berlin, Heidelberg, Genmany: Springer Berlin Heidelberg, pp. 153.
  • Donati, I., Holtan, S., Morch, Y.A., Borgogna, M., Dentini, M., and Skjak-Braek, G. (2005) New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 6: 10311040.
  • Douthit, S.A., Dlakic, M., Ohman, D.E., and Franklin, M.J. (2005) Epimerase active domain of Pseudomonas aeruginosa AlgG, a protein that contains a right-handed beta-helix. J Bacteriol 187: 45734583.
  • Draget, K., Smidsrød, O., and Skjåk-Bræk, G. (2005) Alginates from algae. Biopolymers Online. doi: 10.1002/3527600035.bpol6008.
  • Ertesvåg, H., Valla, S., and Skjåk-bræk, G. (2009) Enzymatic Alginate Modification. In Alginates: Biology and Applications. Rehm, B.H.A. (ed.). Berlin, Heidelberg, Genmany: Springer Berlin Heidelberg, pp. 95115.
  • Farrell, E.K., and Tipton, P.A. (2012) Functional characterization of AlgL, an alginate lyase from Pseudomonas aeruginosa. Biochemistry 51: 1025910266.
  • Firoved, A.M., and Deretic, V. (2003) Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J Bacteriol 185: 10711081.
  • Firoved, A.M., Boucher, J.C., and Deretic, V. (2002) Global genomic analysis of AlgU (sigma(E))-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol 184: 10571064.
  • Franklin, M.J., and Ohman, D.E. (1996) Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O acetylation. J Bacteriol 178: 21862195.
  • Franklin, M.J., and Ohman, D.E. (2002) Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol 184: 30003007.
  • Franklin, M.J., Chitnis, C.E., Gacesa, P., Sonesson, A., White, D.C., and Ohman, D.E. (1994) Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J Bacteriol 176: 18211830.
  • Franklin, M.J., Douthit, S.A., and McClure, M.A. (2004) Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer. J Bacteriol 186: 47594773.
  • Franklin, M.J., Nivens, D.E., Weadge, J.T., and Howell, P.L. (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2: 167.
  • Galindo, E., Pena, C., Nunez, C., Segura, D., and Espin, G. (2007) Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Fact 6: 7.
  • Gaytan, I., Pena, C., Nunez, C., Cordova, M.S., Espin, G., and Galindo, E. (2012) Azotobacter vinelandii lacking the Na(+)-NQR activity: a potential source for producing alginates with improved properties and at high yield. World J Microbiol Biotechnol 28: 27312740.
  • Ghafoor, A., Hay, I.D., and Rehm, B.H. (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77: 52385246.
  • Gimmestad, M., Sletta, H., Ertesvag, H., Bakkevig, K., Jain, S., Suh, S.J., et al. (2003) The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J Bacteriol 185: 35153523.
  • Goldberg, J.B., Hatano, K., and Pier, G.B. (1993) Synthesis of lipopolysaccharide O side chains by Pseudomonas aeruginosa PAO1 requires the enzyme phosphomannomutase. J Bacteriol 175: 16051611.
  • Gutsche, J., Remminghorst, U., and Rehm, B.H. (2006) Biochemical analysis of alginate biosynthesis protein AlgX from Pseudomonas aeruginosa: purification of an AlgX-MucD (AlgY) protein complex. Biochimie 88: 245251.
  • Hay, I.D., Gatland, K., Campisano, A., Jordens, J.Z., and Rehm, B.H. (2009a) Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain. Appl Environ Microbiol 75: 60226025.
  • Hay, I.D., Remminghorst, U., and Rehm, B.H. (2009b) MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol 75: 11101120.
  • Hay, I.D., Rehman, Z.U., and Rehm, B.H. (2010) Membrane topology of outer membrane protein AlgE, which is required for alginate production in Pseudomonas aeruginosa. Appl Environ Microbiol 76: 18061812.
  • Hay, I.D., Schmidt, O., Filitcheva, J., and Rehm, B.H. (2012) Identification of a periplasmic AlgK-AlgX-MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate. Appl Microbiol Biotechnol 93: 215227.
  • Jain, S., and Ohman, D.E. (1998) Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J Bacteriol 180: 634641.
  • Jain, S., and Ohman, D.E. (2005) Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect Immun 73: 64296436.
  • Jain, S., Franklin, M.J., Ertesvag, H., Valla, S., and Ohman, D.E. (2003) The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Mol Microbiol 47: 11231133.
  • Jerga, A., Raychaudhuri, A., and Tipton, P.A. (2006a) Pseudomonas aeruginosa C5-mannuronan epimerase: steady-state kinetics and characterization of the product. Biochemistry 45: 552560.
  • Jerga, A., Stanley, M.D., and Tipton, P.A. (2006b) Chemical mechanism and specificity of the C5-mannuronan epimerase reaction. Biochemistry 45: 91389144.
  • Kato, J., Misra, T.K., and Chakrabarty, A.M. (1990) AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 87: 28872891.
  • Keiski, C.L., Harwich, M., Jain, S., Neculai, A.M., Yip, P., Robinson, H., et al. (2010) AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 18: 265273.
  • Kim, H.Y., Schlictman, D., Shankar, S., Xie, Z., Chakrabarty, A.M., and Kornberg, A. (1998) Alginate, inorganic polyphosphate, GTP and ppGpp synthesis co-regulated in Pseudomonas aeruginosa: implications for stationary phase survival and synthesis of RNA/DNA precursors. Mol Microbiol 27: 717725.
  • Klock, G., Frank, H., Houben, R., Zekorn, T., Horcher, A., Siebers, U., et al. (1994) Production of purified alginates suitable for use in immunoisolated transplantation. Appl Microbiol Biotechnol 40: 638643.
  • Klock, G., Pfeffermann, A., Ryser, C., Grohn, P., Kuttler, B., Hahn, H.J., and Zimmermann, U. (1997) Biocompatibility of mannuronic acid-rich alginates. Biomaterials 18: 707713.
  • Lee, J.W., and Day, D.F. (1995) Bioacetylation of seaweed alginate. Appl Environ Microbiol 61: 650655.
  • Lee, K.Y., and Mooney, D.J. (2012) Alginate: properties and biomedical applications. Prog polym sci 37: 106126.
  • Lim, G.J., Zare, S., Van Dyke, M., and Atala, A. (2010) Cell microencapsulation. Adv Exp Med Biol 670: 126136.
  • Lloret, L., Barreto, R., León, R., Moreno, S., Martínez-Salazar, J., Espín, G., and Soberón-Chávez, G. (1996) Genetic analysis of the transcriptional arrangement of Azotobacter vinelandii alginate biosynthetic genes: identification of two independent promoters. Mol Microbiol 21: 449457.
  • Lynn, A.R., and Sokatch, J.R. (1984) Incorporation of isotope from specifically labeled glucose into alginates of Pseudomonas aeruginosa and Azotobacter vinelandii. J Bacteriol 158: 11611162.
  • Ma, S., Selvaraj, U., Ohman, D.E., Quarless, R., Hassett, D.J., and Wozniak, D.J. (1998) Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J Bacteriol 180: 956968.
  • Martin, D.W., Schurr, M.J., Mudd, M.H., and Deretic, V. (1993a) Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol Microbiol 9: 497506.
  • Martin, D.W., Schurr, M.J., Mudd, M.H., Govan, J.R., Holloway, B.W., and Deretic, V. (1993b) Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90: 83778381.
  • Martinsen, A., Skjak-Braek, G., and Smidsrod, O. (1989) Alginate as immobilization material: I. correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 33: 7989.
  • Mathee, K., McPherson, C.J., and Ohman, D.E. (1997) Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 179: 37113720.
  • May, T.B., Shinabarger, D., Boyd, A., and Chakrabarty, A.M. (1994) Identification of amino-acid-residues involved in the activity of phosphomannose isomerase-guanosine 5′-diphospho-D-mannose pyrophosphorylase – a bifunctional enzyme in the alginate biosynthetic-pathway of Pseudomonas aeruginosa. J Biol Chem 269: 48724877.
  • Merighi, M., Lee, V.T., Hyodo, M., Hayakawa, Y., and Lory, S. (2007) The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65: 876895.
  • Mirshafiey, A., and Rehm, B.H.A. (2009) Alginate and its comonomer mannuronic acid: medical relevance as drugs. In Alginates: Biology and Applications. Rehm, B.H.A. (ed.). Berlin Heidelberg, Genmany: Springer Berlin Heidelberg, pp. 229260.
  • Mørch, Y., Donati, I., Strand, B.L., and Skjåk-Braek, G. (2007) Molecular engineering as an approach to design new functional properties of alginate. Biomacromolecules 8: 28092814.
  • Morgan, J.L., Strumillo, J., and Zimmer, J. (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493: 181186.
  • Narbad, A., Russell, N.J., and Gacesa, P. (1988) Radiolabelling patterns in alginate of Pseudomonas aeruginosa synthesized from specifically-labelled 14C-monosaccharide precursors. Microbios 54: 171179.
  • Nivens, D.E., Ohman, D.E., Williams, J., and Franklin, M.J. (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183: 10471057.
  • Nunez, C., Bogachev, A.V., Guzman, G., Tello, I., Guzman, J., and Espin, G. (2009) The Na+-translocating NADH : ubiquinone oxidoreductase of Azotobacter vinelandii negatively regulates alginate synthesis. Microbiology 155: 249256.
  • Oglesby, L.L., Jain, S., and Ohman, D.E. (2008) Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 154: 16051615.
  • Olvera, C., Goldberg, J.B., Sanchez, R., and Soberon-Chavez, G. (1999) The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett 179: 8590.
  • Paletta, J.L., and Ohman, D.E. (2012) Evidence for two promoters internal to the alginate biosynthesis operon in Pseudomonas aeruginosa. Curr Microbiol 65: 770775.
  • Pena, C., Trujillo-Roldan, M.A., and Galindo, E. (2000) Influence of dissolved oxygen tension and agitation speed on alginate production and its molecular weight in cultures of Azotobacter vinelandii. Enzyme Microb Technol 27: 390398.
  • Pena, C., Miranda, L., Segura, D., Nunez, C., Espin, G., and Galindo, E. (2002) Alginate production by Azotobacter vinelandii mutants altered in poly-beta-hydroxybutyrate and alginate biosynthesis. J Ind Microbiol Biotechnol 29: 209213.
  • Pena, C., Hernandez, L., and Galindo, E. (2006) Manipulation of the acetylation degree of Azotobacter vinelandii alginate by supplementing the culture medium with 3-(N-morpholino)-propane-sulfonic acid. Lett Appl Microbiol 43: 200204.
  • Pier, G.B., Coleman, F., Grout, M., Franklin, M., and Ohman, D.E. (2001) Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69: 18951901.
  • Pulcrano, G., Iula, D.V., Raia, V., Rossano, F., and Catania, M.R. (2012) Different mutations in mucA gene of Pseudomonas aeruginosa mucoid strains in cystic fibrosis patients and their effect on algU gene expression. New Microbiol 35: 295305.
  • Qin, Y. (2008) Alginate fibres: an overview of the production processes and applications in wound management. Polym Int 57: 171180.
  • Qiu, D., Eisinger, V.M., Rowen, D.W., and Yu, H.D. (2007) Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104: 81078112.
  • Qiu, D., Eisinger, V.M., Head, N.E., Pier, G.B., and Yu, H.D. (2008) ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. Microbiology 154: 21192130.
  • Ramsey, D.M., and Wozniak, D.J. (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56: 309322.
  • Rehm, B.H. (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8: 578592.
  • Rehm, B.H., and Valla, S. (1997) Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48: 281288.
  • Rehm, B.H., Boheim, G., Tommassen, J., and Winkler, U.K. (1994a) Overexpression of algE in Escherichia coli: subcellular localization, purification, and ion channel properties. J Bacteriol 176: 56395647.
  • Rehm, B.H., Grabert, E., Hein, J., and Winkler, U.K. (1994b) Antibody response of rabbits and cystic fibrosis patients to an alginate-specific outer membrane protein of a mucoid strain of Pseudomonas aeruginosa. Microb Pathog 16: 4351.
  • Rehman, Z.U., and Rehm, B.H. (2013) Dual roles of Pseudomonas aeruginosa AlgE in secretion of the virulence factor Alginate and formation of the secretion complex. Appl Environ Microbiol 79: 20022011.
  • Rehman, Z.U., Wang, Y., Moradali, M.F., Hay, I.D., and Rehm, B.H. (2013) Insight into assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa. Appl Environ Microbiol 79: 32643272.
  • Remminghorst, U., and Rehm, B.H. (2006a) Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett 580: 38833888.
  • Remminghorst, U., and Rehm, B.H. (2006b) In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol 72: 298305.
  • Remminghorst, U., Hay, I.D., and Rehm, B.H. (2009) Molecular characterization of Alg8, a putative glycosyltransferase, involved in alginate polymerisation. J Biotechnol 140: 176183.
  • Riley, L.M., Weadge, J.T., Baker, P., Robinson, H., Codee, J.D., Tipton, P.A., et al. (2013) Structural and functional characterization of Pseudomonas aeruginosa AlgX: role of AlgX in alginate acetylation. J Biol Chem [Epub ahead of print].
  • Robles-Price, A., Wong, T.Y., Sletta, H., Valla, S., and Schiller, N.L. (2004) AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol 186: 73697377.
  • Roychoudhury, S., May, T.B., Gill, J.F., Singh, S.K., Feingold, D.S., and Chakrabarty, A.M. (1989) Purification and characterization of guanosine diphospho-D-mannose dehydrogenase – a key enzyme in the biosynthesis of alginate by Pseudomonas aeruginosa. J Biol Chem 264: 93809385.
  • Sabra, W., and Zeng, A.-P. (2009) Microbial production of alginates: physiology and process aspects. In Alginates: Biology and Applications. Rehm, B.H.A. (ed.). Berlin Heidelberg, Genmany: Springer-Verlag, pp. 153173.
  • Schurks, N., Wingender, J., Flemming, H.C., and Mayer, C. (2002) Monomer composition and sequence of alginates from Pseudomonas aeruginosa. Int J Biol Macromol 30: 105111.
  • Schurr, M.J., Martin, D.W., Mudd, M.H., Hibler, N.S., Boucher, J.C., and Deretic, V. (1993) The algD promoter: regulation of alginate production by Pseudomonas aeruginosa in cystic fibrosis. Cell Mol Biol Res 39: 371376.
  • Schurr, M.J., Yu, H., Martinez-Salazar, J.M., Boucher, J.C., and Deretic, V. (1996) Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol 178: 49975004.
  • Shankar, S., Ye, R.W., Schlictman, D., and Chakrabarty, A.M. (1995) Exopolysaccharide alginate synthesis in Pseudomonas aeruginosa: enzymology and regulation of gene expression. Adv Enzymol Relat Areas Mol Biol 70: 221255.
  • Shinabarger, D., Berry, A., May, T.B., Rothmel, R., Fialho, A., and Chakrabarty, A.M. (1991a) Purification and characterization of phosphomannose isomerase-guanosine diphospho-D-mannose pyrophosphorylase – a bifunctional enzyme in the alginate biosynthetic-pathway of Pseudomonas aeruginosa. J Biol Chem 266: 20802088.
  • Shinabarger, D., Berry, A., May, T.B., Rothmel, R., Fialho, A., and Chakrabarty, A.M. (1991b) Purification and characterization of phosphomannose isomerase-guanosine diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 266: 20802088.
  • Skjåk-Bræk, G., Zanetti, F., and Paoletti, S. (1989) Effect of acetylation on some solution and gelling properties of alginates. Carbohydr Res 185: 131138.
  • Steiner, S., Lori, C., Boehm, A., and Jenal, U. (2013) Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32: 354368.
  • Tatnell, P.J., Russell, N.J., and Gacesa, P. (1994) GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies. Microbiology 140 (Pt 7): 17451754.
  • Tavares, I.M., Leitao, J.H., Fialho, A.M., and Sa-Correia, I. (1999) Pattern of changes in the activity of enzymes of GDP-D-mannuronic acid synthesis and in the level of transcription of algA, algC and algD genes accompanying the loss and emergence of mucoidy in Pseudomonas aeruginosa. Res Microbiol 150: 105116.
  • Thomas, S. (2000) Alginate dressings in surgery and wound management–Part 1. J Wound Care 9: 5660.
  • Tonnesen, H.H., and Karlsen, J. (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28: 621630.
  • Trujillo-Roldan, M.A., Moreno, S., Segura, D., Galindo, E., and Espin, G. (2003) Alginate production by an Azotobacter vinelandii mutant unable to produce alginate lyase. Appl Microbiol Biotechnol 60: 733737.
  • Trujillo-Roldan, M.A., Moreno, S., Espin, G., and Galindo, E. (2004) The roles of oxygen and alginate-lyase in determining the molecular weight of alginate produced by Azotobacter vinelandii. Appl Microbiol Biotechnol 63: 742747.
  • Weinhouse, H., Sapir, S., Amikam, D., Shilo, Y., Volman, G., Ohana, P., and Benziman, M. (1997) c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Lett 416: 207211.
  • Whitney, J.C., Hay, I.D., Li, C., Eckford, P.D., Robinson, H., Amaya, M.F., et al. (2011) Structural basis for alginate secretion across the bacterial outer membrane. Proc Natl Acad Sci U S A 108: 1308313088.
  • Whitney, J.C., Colvin, K.M., Marmont, L.S., Robinson, H., Parsek, M.R., and Howell, P.L. (2012) Structure of the cytoplasmic region of PelD, a degenerate diguanylate cyclase receptor that regulates exopolysaccharide production in Pseudomonas aeruginosa. J Biol Chem 287: 2358223593.
  • Wood, L.F., and Ohman, D.E. (2006) Independent regulation of MucD, an HtrA-like protease in Pseudomonas aeruginosa, and the role of its proteolytic motif in alginate gene regulation. J Bacteriol 188: 31343137.
  • Wood, L.F., and Ohman, D.E. (2009) Use of cell wall stress to characterize sigma 22 (AlgT/U) activation by regulated proteolysis and its regulon in Pseudomonas aeruginosa. Mol Microbiol 72: 183201.
  • Wood, L.F., Leech, A.J., and Ohman, D.E. (2006) Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: Roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62: 412426.
  • Xie, Z.D., Hershberger, C.D., Shankar, S., Ye, R.W., and Chakrabarty, A.M. (1996) Sigma factor-anti-sigma factor interaction in alginate synthesis: inhibition of AlgT by MucA. J Bacteriol 178: 49904996.
  • Yamasaki, M., Moriwaki, S., Miyake, O., Hashimoto, W., Murata, K., and Mikami, B. (2004) Structure and function of a hypothetical Pseudomonas aeruginosa protein PA1167 classified into family PL-7: a novel alginate lyase with a beta-sandwich fold. J Biol Chem 279: 3186331872.
  • Ye, R.W., Zielinski, N.A., and Chakrabarty, A.M. (1994) Purification and characterization of phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa involved in biosynthesis of both alginate and lipopolysaccharide. J Bacteriol 176: 48514857.
  • Zielinski, N.A., Chakrabarty, A.M., and Berry, A. (1991) Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J Biol Chem 266: 97549763.