SEARCH

SEARCH BY CITATION

References

  • Albertyn, J., Hohmann, S., Thevelein, J.M., and Prior, B.A. (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14: 41354144.
  • Ansell, R., Granath, K., Hohmann, S., Thevelein, J.M., and Adler, L. (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16: 21792187.
  • Athenstaedt, K., and Daum, G. (2000) 1-Acyldihydroxyacetone-phosphate reductase (Ayr1p) of the yeast Saccharomyces cerevisiae encoded by the open reading frame YIL124w is a major component of lipid particles. J Biol Chem 275: 235240.
  • Bahalul, M., Kaneti, G., and Kashi, Y. (2010) Ether-zymolyase ascospore isolation procedure: an efficient protocol for ascospores isolation in Saccharomyces cerevisiae yeast. Yeast 27: 9991003.
  • Bai, F.W., Anderson, W.A., and Moo-Young, M. (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26: 89105.
  • Bakker, B.M., Overkamp, K.M., van Maris, A.J.A., Kötter, P., Luttik, M.A.H., Van Dijken, J.P., and Pronk, J.T. (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25: 1537.
  • van den Berg, M.A., de Jong-Gubbels, P., Kortland, C.J., Van Dijken, J., Pronk, J.T., and Steensma, H.Y. (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271: 2895328959.
  • Björkqvist, S., Ansell, R., Adler, L., and Lidén, G. (1997) Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Environ Microbiol 63: 128132.
  • Blomberg, A., and Adler, L. (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171: 10871092.
  • Boender, L.G.M., de Hulster, E.A.F., van Maris, A.J.A., Daran-Lapujade, P.A.S., and Pronk, J.T. (2009) Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates. Appl Environ Microbiol 75: 56075614.
  • van Dijken, J., and Scheffers, W.A. (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32: 199224.
  • van Dijken, J., Bauer, J., Brambilla, L., Duboc, P., Francois, J.M., Gancedo, C., et al. (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26: 706714.
  • Entian, K.D., and Kötter, P. (2007) Yeast Genetic Strain and Plasmid Collections. In Methods in Microbiology: Yeast Gene Analysis, 2nd edn. Stansfield, I. , and Stark, M.J.R. (eds). Amsterdam: Academic Press, pp. 629666.
  • Guadalupe Medina, V., Almering, M.J.H., van Maris, A.J.A., and Pronk, J.T. (2010) Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 76: 190195.
  • Güldener, U., Heck, S., Fiedler, T., Beinhauer, J., and Hegemann, J.H. (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24: 25192524.
  • Herskowitz, I., and Jensen, R.E. (1991) Putting the HO gene to work: practical uses for mating-type switching. In Methods in Enzymology: Guide to Yeast Genetics and Molecular Biology. Guthrie, C. , and Fink, G.R. (eds). Amsterdam: Academic Press, pp. 132146.
  • Hohmann, S. (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66: 300372.
  • Hounsa, C.G., Brandt, E.V., Thevelein, J., Hohmann, S., and Prior, B.A. (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144: 671680.
  • Hubmann, G., Guillouet, S., and Nevoigt, E. (2011) Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl Environ Microbiol 77: 58575867.
  • Jain, V., Divol, B., Prior, B., and Bauer, F. (2011) Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 38: 14271435.
  • Jones, A.M., Thomas, K.C., and Ingledew, W.M. (1994) Ethanolic fermentation of blackstrap molasses and sugar cane juice using very high gravity technology. J Agric Food Chem 42: 12421246.
  • Laluce, C. (1991) ) Current aspects of fuel ethanol production in Brazil. Crit Rev Biotechnol 11: 149161.
  • Mahmud, S.A., Nagahisa, K., Hirasawa, T., Yoshikawa, K., Ashitani, K., and Shimizu, H. (2009) ) Effect of trehalose accumulation on response to saline stress in Saccharomyces cerevisiae. Yeast 26:1730.
  • van Maris, A., Abbott, D., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M., et al. (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90: 391418.
  • Nevoigt, E. (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72: 379412.
  • Nevoigt, E., and Stahl, U. (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21: 231241.
  • Nijkamp, J., van den Broek, M., Datema, E., de Kok, S., Bosman, L., Luttik, M., et al. (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11: 36.
  • Nissen, T.L., Kielland-Brandt, M.C., Nielsen, J., and Villadsen, J. (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2: 6977.
  • Oud, B., van Maris, A.J.A., Daran, J.M., and Pronk, J.T. (2012) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12: 183196.
  • Pagliardini, J., Hubmann, G., Bideaux, C., Alfenore, S., Nevoigt, E., and Guillouet, S. (2010) Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process. Microb Cell Fact 9: 36.
  • Palmqvist, E., and Hahn-Hägerdal, B. (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74: 1724.
  • Pronk, J.T. (2002) Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68: 20952100.
  • Racenis, P.V., Lai, J.L., Das, A.K., Mullick, P.C., Hajra, A.K., and Greenberg, M.L. (1992) The acyl dihydroxyacetone phosphate pathway enzymes for glycerolipid biosynthesis are present in the yeast Saccharomyces cerevisiae. J Bacteriol 174: 57025710.
  • Renewable Fuels Association (2012) World fuel Ethanol production [WWW document]. URL http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production.
  • Rudolf, A., Alkasrawi, M., Zacchi, G., and Lidén, G. (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 37: 195204.
  • Sauer, U. (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73: 129169.
  • Scheffers, W.A. (1966) Stimulation of fermentation in yeasts by acetoin and oxygen. Nature 210: 533534.
  • Shen, B., Hohmann, S., Jensen, R.G., and Bohnert, H. (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121: 4552.
  • Sugawara, N., and Haber, J. (2012) Monitoring DNA recombination initiated by HO Endonuclease. In DNA Repair Protocols. Bjergbæk, L. (ed.). New York, NY, USA: Humana Press, pp. 349370.
  • Swinnen, S., Thevelein, J.M., and Nevoigt, E. (2012) Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res 12: 215227.
  • Taherzadeh, M., Millati, R., and Niklasson, C. (2001) Continuous cultivation of dilute-acid hydrolysates to ethanol by immobilized Saccharomyces cerevisiae. Appl Biochem Biotechnol 95: 4557.
  • Takagi, H. (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81: 211223.
  • Verduyn, C., Postma, E., Scheffers, W.A., and van Dijken, J.P. (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136: 395403.
  • Wisselink, H.W., Toirkens, M.J., Wu, Q., Pronk, J.T., and van Maris, A.J.A. (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75: 907914.