SEARCH

SEARCH BY CITATION

References

  • An, B., Hinman, M.B., Holland, G.P., Yarger, J.L., and Lewis, R.V. (2011) Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromolecules 12: 23752381.
  • An, B., Jenkins, J.E., Sampath, S., Holland, G.P., Hinman, M., Yarger, J.L., and Lewis, R. (2012) Reproducing natural spider silks' copolymer behavior in synthetic silk mimics. Biomacromolecules 13: 39383948.
  • Asakura, T., Umemura, K., Nakazawa, Y., Hirose, H., Higham, J., and Knight, D. (2007) Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori. Biomacromolecules 8: 175181.
  • Barr, L.A., Fahnestock, S.R., and Yang, J. (2004) Production and purification of recombinant DP1B silk -like protein in plants. Mol Breed 13: 345356.
  • Brooks, A.E., Steinkraus, H.B., Nelson, S.R., and Lewis, R.V. (2005) An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia. Biomacromolecules 6: 30953099.
  • Brooks, A.E., Stricker, S.M., Joshi, S.B., Kamerzell, T.J., Middaugh, C.R., and Lewis, R.V. (2008) Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules 9: 15061510.
  • Chung, H., Kim, T.Y., and Lee, S.Y. (2012) Recent advances in production of recombinant spider silk proteins. Curr Opin Biotechnol 23: 957964.
  • Dams-Kozlowska, H., Majer, A., Tomasiewicz, P., Lozinska, J., Kaplan, D.L., and Mackiewicz, A. (2012) Purification and cytotoxicity of tag-free bioengineered spider silk proteins. J Biomed Mater Res A 101A: 456464.
  • Eisoldt, L., Smith, A., and Scheibel, T. (2011) Decoding the secrets of spider silk. Mater Today 14: 8086.
  • Fahnestock, S.R., and Bedzyk, L.A. (1997) Production of synthetic spider dragline silk protein in Pichia pastoris. Appl Microbiol Biotechnol 47: 3339.
  • Fahnestock, S.R., and Irwin, S.L. (1997) Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl Microbiol Biotechnol 47: 2332.
  • Gomes, S.C., Leonor, I.B., Mano, J.F., Reis, R.L., and Kaplan, D.L. (2011) Antimicrobial functionalized genetically engineered spider silk. Biomaterials 32: 42554266.
  • Gosline, J.M., Denny, M.W., and DeMont, M.E. (1984) Spider silk as rubber. Nature 309: 551552.
  • Grip, S., Rising, A., Nimmervoll, H., Storckenfeldt, E., McQueen-Mason, S., Pouchkina-Stantcheva, N., et al. (2006) Transient expression of a major ampullate spidroin 1 gene fragment from Euprosthenops sp. in mammalian cells. Cancer Genomics and Proteomics 3: 8387.
  • Hauptmann, V., Weichert, N., Menzel, M., Knoch, D., Paege, N., Scheller, J., et al. (2013) Native-sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Res 22: 369377.
  • Heim, M., Keerl, D., and Scheibel, T. (2009) Spider silk: from soluble protein to extraordinary eiber. Angew Chem Int Edit 48: 35843596.
  • Higashiya, S., Topilina, N.I., Ngo, S.C., Zagorevskii, D., and Welch, J.T. (2007) Design and Preparation of b-Sheet Forming Repetitive and Block-Copolymerized Polypeptides. Biomacromolecules 8: 14871497.
  • Hu, X., and Kaplan, D.L. (2011) Silk Biomaterials. In Comprehensive Biomaterials. Ducheyne, P. (ed.). Oxford, UK: Elsevier, pp. 207219.
  • Hu, X., Vasanthavada, K., Kohler, K., McNary, S., Moore, A., and Vierra, C. (2006) Molecular mechanisms of spider silk. Cell Mol Life Sci 63: 19861999.
  • Huang, J., Wong, C., George, A., and Kaplan, D.L. (2007) The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28: 23582367.
  • Huemmerich, D., Helsen, C.W., Quedzuweit, S., Oschmann, J., Rudolph, R., and Scheibel, T. (2004) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43: 1360413612.
  • Humenik, M., Scheibel, T., and Smith, A. (2011) Spider silk understanding the structure-function relationship of a natural fiber. Prog Mol Biol Transl Sci 103: 131185.
  • Ittah, S., Cohen, S., Garty, S., Cohn, D., and Gat, U. (2006) An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation. Biomacromolecules 7: 17901795.
  • Kluge, J.A., Rabotyagova, O., Leisk, G.G., and Kaplan, D.L. (2008) Spider silks and their applications. Trends Biotechnol 26: 244251.
  • Knight, D.P., and Vollrath, F. (2001) Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 88: 179182.
  • Knight, D.P., and Vollrath, F. (2002) Spinning an elastic ribbon of spider silk, Philosophical Transactions of the Royal Society B. Biol Sci 357: 219227.
  • Kojima, K., Kuwana, Y., Sezutsu, H., Kobayashi, I., Uchino, K., Tamura, T., and Tamada, Y. (2007) A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem 71: 29432951.
  • Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J.F., Duguay, F., Chretien, N., et al. (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295: 472476.
  • Leopoldo, R.F.E., Cristina, V.F.N., Rodrigues, V.G., Rodrigues, D.S.F., Jose, L.A.F., Alberto, C.L., et al. (2007) US20100311645 – Proteins from the webs of Nephilengys cruentata, Avicularia juruensis and Parawixia bistriata spiders isolated from brazilian biodiversity. In: US20100311645 A1 20101209: Empresa Brasileira de Pesquisa Agropecuaria- EMBRAPA (Brasilia – DF, BR); Fundacao Universidade de Brasilia (Brasilia – DF, BR).
  • Lewicka, M., Hermanson, O., and Rising, A.U. (2012) Recombinant spider silk matrices for neural stem cell cultures. Biomaterials 33: 77127717.
  • Lewis, R.V. (2006a) Spider silk: ancient ideas for new biomaterials. Chem Rev 106: 37623774.
  • Lewis, R.V. (2006b) Spider silk production. In Bionanotechnology. Proteins to Nanodevices. Renugopalakrishnan, V. and Lewis, R.V. (eds). Dordrecht, the Netherlands: Springer, pp. 6178.
  • Lewis, R.V., Hinman, M., Kothakota, S., and Fournier, M.J. (1996) Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expr Purif 7: 400406.
  • Lin, Z., Deng, Q., Liu, X.Y., and Yang, D. (2013) Engineered large spider eggcase silk protein for strong artificial fibers. Adv Mater 25: 12161220.
  • Meyer, D.E., and Chilkoti, A. (2002) Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3: 357367.
  • Mieszawska, A.J., Fourligas, N., Georgakoudi, I., Ouhib, N.M., Belton, D.J., Perry, C.C., and Kaplan, D.L. (2010) Osteoinductive silk–silica composite biomaterials for bone regeneration. Biomaterials 31: 89028910.
  • Motohashi, T., Shimojima, T., Fukagawa, T., Maenaka, K., and Park, E.Y. (2005) Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochem Biophys Res Commun 326: 564569.
  • Numata, K., Mieszawska-Czajkowska, A.J., Kvenvold, L.A., and Kaplan, D.L. (2012) Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromol Biosci 12: 7582.
  • Prince, J.T., McGrath, K.P., DiGirolamo, C.M., and Kaplan, D.L. (1995) Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 34: 1087910885.
  • Rabotyagova, O.S., Cebe, P., and Kaplan, D.L. (2009) Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules 10: 229236.
  • Rabotyagova, O.S., Cebe, P., and Kaplan, D.L. (2010) Role of polyalanine domains in β-sheet formation in spider silk block copolymers. Macromol Biosci 10: 4959.
  • Rabotyagova, O.S., Cebe, P., and Kaplan, D.L. (2011) Protein-based block copolymers. Biomacromolecules 12: 269289.
  • Rech, E.L., Vianna, G.R., and Aragao, F.J.L. (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protocols 3: 410418.
  • Rising, A., Widhe, M., Johansson, J., and Hedhammar, M. (2011) Spider silk proteins: recent advances in recombinant production, structure–function relationships and biomedical applications. Cell Mol Life Sci 68: 169184.
  • Rosenberg, A.H., Goldman, E., Dunn, J.J., Studier, F.W., and Zubay, G. (1993) Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J Bacteriol 175: 716722.
  • Scheller, J., and Conrad, U. (2005) Plant-based material, protein and biodegradable plastic. Curr Opin Plant Biol 8: 188196.
  • Scheller, J., Guhrs, K.H., Grosse, F., and Conrad, U. (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19: 573577.
  • Service, R.F. (2002) Materials science. Mammalian cells spin a spidery new yarn. Science 295: 419421.
  • Steinkraus, H.B., Rothfuss, H., Jones, J.A., Dissen, E., Shefferly, E., and Lewis, R.V. (2012) The absence of detectable fetal microchimerism in nontransgenic goats (Capra aegagrus hircus) bearing transgenic offspring. J Anim Sci 90: 481488.
  • Teule, F., Cooper, A.R., Furin, W.A., Bittencourt, D., Rech, E.L., Brooks, A., and Lewis, R.V. (2009) A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc 4: 341355.
  • Teulé, F., Addison, B., Cooper, A.R., Ayon, J., Henning, R.W., Benmore, C.J., et al. (2012a) Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers. Biopolymers 97: 418431.
  • Teulé, F., Miao, Y.-G., Sohn, B.-H., Kim, Y.-S., Hull, J.J., Fraser, M.J., et al. (2012b) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci U S A 109: 923928.
  • Vepari, C., and Kaplan, D.L. (2007) Silk as a biomaterial. Prog Polym Sci 32: 9911007.
  • Vollrath, F., and Knight, D.P. (1999) Structure and function of the silk production pathway in the spider Nephila edulis. Int J Biol Macromol 24: 243249.
  • Wang, C., Patwardhan, S.V., Belton, D.J., Kitchel, B., Anastasiades, D., Huang, J., et al. (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci U S A 103: 94289433.
  • Wen, H., Lan, X., Zhang, Y., Zhao, T., Wang, Y., Kajiura, Z., and Nakagaki, M. (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37: 18151821.
  • Widmaier, D.M., Tullman-Ercek, D., Mirsky, E.A., Hill, R., Govindarajan, S., Minshull, J., and Voigt, C.A. (2009) Engineering the Salmonella type III secretion system to export spider silk monomers. Mol Syst Biol 5: 19.
  • Williams, D. (2003) Sows' ears, silk purses and goats' milk: new production methods and medical applications for silk. Med Device Technol 14: 911.
  • Wright, E.R., and Conticello, V.P. (2002) Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv Drug Delivery Rev 54: 10571073.
  • Xia, X.X., Qian, Z.G., Ki, C.S., Park, Y.H., Kaplan, D.L., and Lee, S.Y. (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci U S A 107: 1405914063.
  • Xu, H.T., Fan, B.L., Yu, S.Y., Huang, Y.H., Zhao, Z.H., Lian, Z.X., et al. (2007) Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim Biotechnol 18: 112.
  • Xu, L., Rainey, J.K., Meng, Q., and Liu, X.-Q. (2012) Recombinant minimalist spider wrapping silk proteins capable of native-like fiber formation. PLoS ONE 7: e50227.
  • Yang, J., Barr, L.A., Fahnestock, S.R., and Liu, Z.B. (2005) High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 14: 313324.
  • Zhang, Y., Hu, J., Miao, Y., Zhao, A., Zhao, T., Wu, D., et al. (2008) Expression of EGFP-spider dragline silk fusion protein in BmN cells and larvae of silkworm showed the solubility is primary limit for dragline proteins yield. Mol Biol Rep 35: 329335.
  • Zhang, Y., Zhao, T., Zhao, A., and Nakagaki, M. (2011) Stably express spider flagelliform silk protein in Bombyx mori cell line by piggyBac transposon-derived vector. Tianjin. 779–782.