SEARCH

SEARCH BY CITATION

References

  • ATSDR (2007) Substances most frequently found in completed exposure pathways (CEPs) at hazardous waste Sites. United States Department of Health and Human Services, Agency for Toxic Substances & Disease Registry, CEP Report. [WWW document]. URL http://www.Atsdr.cdc.gov. Accessed on 11 February 2011.
  • Aulenta, F., Catervi, A., Majone, M., Panero, S., Reale, P., and Rossetti, S. (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41: 25542559.
  • Aulenta, F., Canosa, A., Majone, M., Panero, S., Reale, P., and Rossetti, S. (2008) Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bio-electrochemical system. Environ Sci Technol 42: 61856190.
  • Aulenta, F., Canosa, A., Roma, L.D., Reale, P., Panero, S., Rossetti, S., and Majone, M. (2009a) Influence of mediator immobilization on the electrochemically assisted microbial dechlorination of trichloroethene (TCE) and cis- dichloroethene (cis-DCE). J Chem Technol Biotechnol 84: 864870.
  • Aulenta, F., Canosa, A., Reale, P., Rossetti, S., Panero, S., and Majone, M. (2009b) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 103: 8591.
  • Ball, A.S. (2013) The use of microorganisms for bioremediation. In Proceedings of Organization for Economic Co-operation and Development (OECD) on Environmental Use of Microorganisms, Paris, France. Paris: OECD Publishing, in press.
  • Bennetto, H.P. (1990) Electricity generation by micro-organisms. Biotechnol Ed 1: 163168.
  • Bond, D.R., and Lovley, D.R. (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69: 15481555.
  • Bond, D.R., Holmes, D.E., Tender, L.M., and Lovley, D.R. (2002) Electrode–reducing microorganisms that harvest energy from marine sediments. Science 295: 483485.
  • Dong, Y., Butler, E.C., Philp, R.P., and Krumholz, L.R. (2011) Impacts of microbial community composition on isotope fractionation during reductive dechlorination of tetrachloroethylene. Biodegradation 22: 431444.
  • Drzyzga, O., Gerritse, J., Dijk, J.A., Elissen, H., and Gottschal, J.C. (2001) Coexistence of a sulphate reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulfate and tetrachloroethene. Environ Microbiol 3: 9299.
  • Eydal, H.S., Jagevall, S., Hermansson, M., and Pedersen, K. (2009) Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater. ISME J 3: 11391147.
  • Flynn, S.J., Löffler, F.E., and Tiedje, J.M. (2000) Microbial community changes associated with a shift from reductive dechlorination of PCE to reductive dechlorination of cis-DCE and VC. Environ Sci Technol 34: 10561061.
  • Futagami, T., Goto, M., and Furukawa, K. (2008) Biochemical and genetic bases of dehalorespiration. Chem Record 8: 112.
  • Gu, A.Z., Hedlund, B.P., Staley, J.T., Strand, S.E., and Stensel, H.D. (2004) Analysis and comparison of the microbial community structures of two enrichment cultures capable of reductively dechlorinating TCE and cis-DCE. Environ Microbiol 6: 4554.
  • Høj, L., Olsen, R.A., and Torsvik, V.L. (2008) Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high arctic peat. ISME J 2: 3748.
  • Holliger, C., Wohlfarth, G., and Diekert, G. (1999) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22: 383398.
  • Kim, B.H., Baek, K.H., Cho, D.H., Sung, Y., Koh, S.C., Ahn, C.Y., et al. (2010) Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment. Biotechnol Lett 32: 18291835.
  • Löffler, F.E., Cole, J.R., Ritalahti, K.M., and Tiedje, J.M. (2003) Diversity of dechlorinating bacteria. In Dehalogenation: Microbial Processes and Environmental Applications. Haggblom, M.M. , and Bossert, I.D. (eds). Norwell, MA, USA: Kluwer Academic Publisher, pp. 5387.
  • Löffler, F.E., Sanford, R.A., and Ritalahti, K.M. (2005) Enrichment, cultivation and detection of reductively dechlorinating bacteria. Meth Enzymol 397: 77111.
  • Lohner, S.T., and Tiehm, A. (2009) Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation. Environ Sci Technol 43: 70987104.
  • Lovley, D.R. (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3: 2735.
  • Lovley, D.R. (2012) Electromicrobiology. Annu Rev Microbiol 66: 391409.
  • Low, A., Zemb, O., and Manefield, M. (2011) Characterisation of a Unique Mixed Bacteria Culture that Degrades 1,2-Dichloroethane in Low pH Conditions. Sydney, NSW, Australia: Centre for Marine Bio-Innovation, University of New South Wales.
  • Macbeth, T.W., Cummings, D.E., Spring, S., Petzke, L.M., and Sorenson, K.S. (2004) Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl Environ Microbiol 70: 73297341.
  • McKew, B.A., Coulon, F., Osborn, A.M., McGenity, T.J., and Timmis, K.N. (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9: 177186.
  • Moran, M.J., Zogorski, J.S., and Squillace, P.J. (2007) Chlorinated solvents in groundwater of United States. Environ Sci Technol 41: 7481.
  • Muyzer, G., de Waal, E.C., and Uitterlinden, A. (1993) Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction- amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695700.
  • Patil, S.S., Kumar, M.S., and Ball, A.S. (2010) Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Appl Microbiol Biotechnol 87: 353363.
  • Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M., and Verstraete, W. (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70: 53735382.
  • Ritalahti, K.M., Hatt, J.K., Petrovskis, E., and Löffler, F.E. (2010) Groundwater sampling for nucleic acid biomarker analysis. In Handbook of Hydrocarbon and Lipid Microbiology. Timmis, K.N. (ed.). Berlin Heidelberg, Germany: Springer-Verlag, pp. 34073418.
  • Strycharz, S.M., Woodad, T.L., Johnson, J.P., Nevin, K.P., Saford, R.A., Löffler, F.E., and Lovely, D.R. (2008) Graphic electrode as sole electron donor for reductive dechlorination of tetrachloroethene by Geobacter loveleyi. Appl Environ Microbiol 74: 59435947.
  • Sun, B., Cole, J.R., Sanford, R.A., and Tiedje, J.M. (2000) Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl Environ Microbiol 66: 24082413.
  • Tancsics, A., Szabo, I., Baka, E., Szoboszlay, S., Kukolya, J., Kriszt, B., and Marialigeti, K. (2010) Investigation of catechol 2,3-dioxygenase and 16S rRNA gene diversity in hypoxic, petroleum hydrocarbon contaminated groundwater. Syst Appl Microbiol 33: 398406.
  • Wei, L., Han, H., and Shen, J. (2012) Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell. Int J Hydrogen Energy 37: 1298012986.
  • Williams, K.H., Nevin, K.P., Franks, A., Englert, A., Long, P.E., and Lovley, D.R. (2010) Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation. Environ Sci Technol 44: 4754.