• Agbogbo, F.K., and Coward-Kelly, G. (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30: 15151524.
  • Bajwa, P.K., Shireen, T., D'Aoust, F., Pinel, D., Martin, V.J., Trevors, J.T., and Lee, H. (2009) Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol Bioeng 104: 892900.
  • Chu, B.C., and Lee, H. (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25: 425441.
  • Dai, M., and Copley, S.D. (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70: 23912397.
  • Gong, J., Zheng, H., Wu, Z., Chen, T., and Zhao, X. (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27: 9961005.
  • Guo, C., and Jiang, N. (2013) Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation. World J Microb Biot 29: 541547.
  • Hahn-Hägerdal, B., Karhumaa, K., Jeppsson, M., and Gorwa-Grauslund, M.F. (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108: 147177.
  • Hou, L. (2010) Improved Production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotech 160: 10841093.
  • Huang, C.F., Lin, T.H., Guo, G.L., and Hwang, W.S. (2009) Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour Technol 100: 39143920.
  • Jeffries, T.W., and Jin, Y.S. (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63: 495509.
  • Jeffries, T.W., Grigoriev, I.V., Grimwood, J., Laplaza, J.M., Aerts, A., Salamov, A., et al. (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25: 319326.
  • Jeppsson, M., Traff, K., Johansson, B., Hahn-Hagerdal, B., and Gorwa-Grauslund, M.F. (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3: 167175.
  • Jin, Z.H., Xu, B., Lin, S.Z., Jin, Q.C., and Cen, P.L. (2009) Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotech 159: 655663.
  • Kim, D.M., Choi, S.H., Ko, B.S., Jeong, G.Y., Jang, H.B., Han, J.G., et al. (2012) Reduction of PDC1 expression in S. cerevisiae with xylose isomerase on xylose medium. Bioprocess Biosyst Eng 35: 183189.
  • Kuyper, M., Winkler, A.A., van Dijken, J.P., and Pronk, J.T. (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4: 655664.
  • Lee, J.K., Koo, B.S., and Kim, S.Y. (2003) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69: 61796188.
  • Lee, S.M., Jellison, T., and Alper, H.S. (2012) Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 78: 57085716.
  • Ness, J.E., Welch, M., Giver, L., Bueno, M., Cherry, J.R., Borchert, T.V., et al. (1999) DNA shuffling of subgenomic sequences of subtilisin. Nat Biotechnol 17: 893896.
  • Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W.P., Ryan, C.M., and Del, C.S. (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20: 707712.
  • Shi, D.J., Wang, C.L., and Wang, K.M. (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36: 139147.
  • Slininger, P.J., Thompson, S.R., Weber, S., Liu, Z.L., and Moon, J. (2011) Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag. Biotechnol Bioeng 108: 18011815.
  • Yu, L., Pei, X., Lei, T., Wang, Y., and Feng, Y. (2008) Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134: 154159.
  • Zhang, M., Xiao, Y., Zhu, R., Zhang, Q., and Wang, S.L. (2012a) Enhanced thermotolerance and ethanol tolerance in Saccharomyces cerevisiae mutated by high-energy pulse electron beam and protoplast fusion. Bioprocess Biosyst Eng 35: 14551465.
  • Zhang, M., Zhu, R., Zhang, M., Gao, B., Sun, D., and Wang, S. (2012b) High-energy pulse-electron-beam-induced molecular and cellular damage in Saccharomyces cerevisiae. Res Microbiol 164: 100109.
  • Zhang, Y.X., Perry, K., Vinci, V.A., Powell, K., Stemmer, W.P., and Del, C.S. (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415: 644646.
  • Zhao, K., Ping, W., Zhang, L., Liu, J., Lin, Y., Jin, T., and Zhou, D. (2008) Screening and breeding of high taxol producing fungi by genome shuffling. Sci China C Life Sci 51: 222231.