SEARCH

SEARCH BY CITATION

References

  • Ahn, W., Park, J., and Lee, S. (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66: 36243627.
  • Althuri, A., Mathew, J., Sindhu, R., Banerjee, R., Pandey, A., and Binod, P. (2013) Microbial synthesis of poly-3-hydroxybutyrate and its application as targeted drug delivery vehicle. Bioresour Technol 145: 290296.
  • Bocanegra, J.K., Pradella, J.G.C., da Silva, L.F., Taciro, M.K., and Gomez, J.G.C. (2013) Influence of pH on the molecular weight of poly-3-hydroxybutiric acid (P3HB) produced by recombinant Escherichia coli. Appl Biochem Biotechnol 170: 13361347.
  • Bornatsev, A.P., Yakovlev, S.G., Zharkova, I.I., Boskhomdzhiev, A.P., Bagrov, D.V., Myshkina, V.L., et al. (2013) Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B. BMC Biochem 14: 12.
  • Brandl, H., Gross, R.A., Lenz, R.W., and Fuller, R.C. (1988) Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54: 19771982.
  • Byrom, D. (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5: 246250.
  • Cao, W., Wang, A., Jing, D., Gong, Y., Zhao, N., and Zhang, X. (2005) Novel biodegradable films blended with poly(3-hydroxybutyrate). J Biomater Sci Polym Ed 16: 13791394.
  • Cavalheiro, J.M.B.T., De Almeida, M., Grandfils, C., and Da Fonseca, M. (2009) Poly (3-hydroxybutyrate) production by Cupriavidus necato using waste glycerol. Process Biochem 44: 509515.
  • Centeno-Leija, S., Huerta-Beristain, G., Giles-Gomez, M., Bolivar, F., Gosset, G., and Martinez, A. (2014) Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability. Antonie Van Leeuwenhoek 105: 687696.
  • Chan, R.T.H., Rusell, R.A., Marcal, H., Lee, T.H., Holden, P.J., and Foster, J.R. (2014) BioPEGylation of polyhydroxybutyrate promotes nerve cell health and migration. Biomacromolecules 15: 339349.
  • Chanprateep, S. (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110: 621632.
  • Chen, C.W., Don, T.R., and Yen, H.F. (2006) Enzymatic extruded starch as a carbon source for the production of poly (3-hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. Process Biochem 41: 22892296.
  • Chen, G. (2009) A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem Soc Rev 38: 24342446.
  • Chen, G., and Wang, Y. (2013) Medical applications of biopolyesters polyhydroxyalkanoates. Chin J Polym Sci 31: 719736.
  • Chen, G., and Wu, Q. (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26: 65656578.
  • Chen, G.Q. (2010) Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. In Plastics from Bacteria, Alexander Steinbüchel, Series (ed.). Chen, G.-Q. (ed.). Berlin, Germany: Microbiology Monographs, Springer-Verlag, pp. 1737.
  • Chen, G.Q., and Page, W. (1994) The effect of substrate on the molecular weight of poly-β-hydroxybutyrate produced by Azotobacter vinelandii UWD. Biotechnol Lett 16: 155160.
  • Chen, G.Q., and Page, W. (1997) Production of poly-β-hydroxybutyrate by Azotobacter vinelandii in a two-stage fermentation process. Biotechnol Tech 11: 347350.
  • De Smet, M.J., Eggink, G., Witholt, B., Kingma, J., and Wynberg, H. (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154: 870878.
  • Errico, C., Bartoli, C., Chiellini, F., and Chiellini, E. (2009) Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. J Biomed Biotechnol. doi:10.1155/2009/571702.
  • Filho, L.X., Olyveira, G.M., Basmaji, P., and Manzine-Costa, L.M. (2013) Novel electrospun nanotholits/PHB scaffolds for bone tissue regeneration. J Nanosci Nanotechnol 13: 47154719.
  • García, A., Segura, D., Espín, G., Galindo, E., Castillo, T., and Pena, C. (2014) High production of poly-β-hydroxybutyrate (PHB) by an Azotobacter vinelandii mutant altered in PHB regulation using a fed-batch fermentation process. Biochem Eng J 82: 117123.
  • Grage, K., Jahns, A.C., Parlane, N., Palanisamy, R., Rasiah, I.A., Atwood, J.A., and Rehm, B.A.H. (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10: 660669.
  • Grothe, E., and Chisti, Y. (2000) Poly (ß-hydroxybutiric acid) thermoplastic production by Alcaligenes latus: behavior of fed-batch cultures. Bioprocess Eng 22: 441449.
  • Helm, J., Wendlandt, K.D., Jechorek, M., and Stottmeister, U. (2008) Potassium deficiency results in accumulation of ultra-high-molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture. J Appl Microbiol 105: 10541061.
  • Hernández-Eligio, A., Moreno, S., Castellanos, M., Castañeda, M., Nuñez, C., Muriel-Millan, L., and Espín, G. (2012) RsmA post-transcriptionally controls PhbR expression and polyhydroxybutyrate biosynthesis in Azotobacter vinelandii. Microbiology 158: 19531963.
  • Hezayen, F.F., Rehm, B.H.A., Eberhardt, R., and Steinbüchel, A. (2000) Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 54: 319325.
  • Hiroe, A., Tsuge, K., Nomura, C.T., Itaya, M., and Tsuge, T. (2012) Rearrangement of gene order in the phaCAB operon leads to effective production of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli. Appl Environ Microbiol 78: 31773184.
  • Hoffmann, N., Steinbüchel, A., and Rehm, B.H.A. (2000a) The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acids consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol Lett 184: 253260.
  • Hoffmann, N., Steinbüchel, A., and Rehm, B.H.A. (2000b) Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxy- alkanoate biosynthetic pathway. Appl Microbiol Biotechnol 54: 665670.
  • Hong, S.W., Hsu, H.W., and Ye, M.T. (2013) Thermal properties and applications of low molecular weight polyhyxybutyrate. J Therm Anal Calorim 111: 12431250.
  • Huang, T.Y., Duan, K.J., Huang, S.Y., and Chen, C.W. (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33: 701706.
  • Iwata, T. (2005) Strong fibers and films of microbial polyesters. Macromol Biosci 5: 689701.
  • Kabe, T., Tsuge, T., Kasuya, K., Takemura, A., Hikima, T., Takata, M., and Iwata, T. (2012) Physical and structural effects of adding ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] to wild type poly[(R)-3-hydroxybutyrate]. Macromolecules 45: 18581865.
  • Kanjanachumpol, P., Kulpreecha, S., Tolieng, V., and Thongchul, N. (2013) Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019. Bioproc Biosyst Eng 36: 14631474.
  • Kessler, B., and Witholt, B. (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86: 97104.
  • Khanna, S., and Srivastava, A.K. (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40: 607619.
  • Kim, B.S. (2000) Production of poly(3-hydroxybutyrate) from inexpensive substrates. Enzyme Microb Technol 27: 774777.
  • Kim, B.S., and Chang, H.N. (1998) Production of poly(3-hydroxybutyrate) from starch by Azotobacter chroococcum. Biotechnol Lett 20: 109112.
  • Kulpreecha, S., Boonruangthavorn, A., Meksiriporn, B., and Thongchul, N. (2009) Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J Biosci Bioeng 107: 240249.
  • Kusaka, S., Iwata, T., and Doi, Y. (1998) Microbial synthesis and physical properties of ultra-high-molecular-weight poly[(R)-3hydroxybutyrate]. Pure Appl Chem A 35: 319335.
  • Lagaveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., and Witholt, B. (1988) Formation of polyesters by Pseudomonas oleovorans; effect of substrates on formation and composition of poly-(R)-3- hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54: 29242932.
  • Lee, S.Y. (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49: 114.
  • Legat, A., Gruber, C., Zangger, K., Wanner, G., and Stan-Lotter, H. (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biotechnol 87: 11191127.
  • Li, R., Zhang, H., and Qi, Q. (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98: 23132320.
  • Lu, J., Tappel, R.C., and Nomura, C.T. (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). Polym Rev 49: 226248. doi:10.1080/ 15583720903048243.
  • Masaeli, E., Morshed, M., Rasekhian, P., Karbasi, S., Karbalaie, K., Karamali, F., et al. (2012) Does the tissue engineering architecture of poly(3-hydroxybutyrate) scaffold affects cell-material interactions? J Biomed Mater Res A 100A: 19071918.
  • Masaeli, E., Morshed, M., Nasr-Esfahani, M.H., Sadri, S., Hilderink, J., van Apeldoorn, A., et al. (2013) Fabrication, characterization and cellular compatibility of poly (hydroxy alkanoate) composite nonofibrous scaffolds for nerve tissue engineering. PLoS ONE 8: e57157.
  • Matsumoto, K., Matsusaki, H., Taguchi, S., Seki, M., and Doi, Y. (2001) Cloning and characterization of the Pseudomonas sp. 61-3 phaG gene involved in polyhydroxyalkanoate biosynthesis. Biomacromolecules 2: 142147.
  • Medvecky, L., Giretova, M., and Stulajterova, R. (2014) Properties and in vitro characterization of polyhydroxybutyrate-chitosan scaffolds prepared by modified precipitation method. J Mater Sci Mater Med 25: 777789.
  • Mejía, M.A., Segura, D., Espín, G., Galindo, E., and Peña, C. (2010) Two stage fermentation process for alginate production by Azotobacter vinelandii mutant altered in poly-B- hydroxybutirate PHB synthesis. J Appl Microbiol 108: 5561.
  • Mendonca, R.H., de Oliveira, T., Ferreira de Costa, M., and da Silva, R.M. (2013) Production of 3D scaffolds applied to tissue engineering using chitosan swelling as a porogenic agent. J Appl Polym Sci 129: 614625.
  • Mozumder, M.S.I., De Wever, H., Volcke, E.I.P., and Garcia-Gonzalez, L. (2014) A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochem 155: 272280.
  • Murakami, R., Sato, H., Dybal, J., Iwata, T., and Ozaki, Y. (2007) Formation and stability of β-structure in biodegradable ultra-high-molecular weight poly(3-hydroxybutyrate) by infrared, Raman, and quantum chemical calculation studies. Polymer 48: 26722680.
  • Myshkina, V.L., Nikolaeva, D.A., Makhina, T.K., Bonartsev, A.P., Filatova, E.V., Ruzhitsky, A.O., and Bonartseva, G.A. (2008) Effect of growth conditions on the molecular weight of Poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7B. Appl Biochem Microbiol 44: 482486.
  • Nath, A., Dixit, M., Bandiya, A., Chavda, S., and Desai, A.J. (2008) Enhanced PHB production and scale up studies using cheese whey in fed batch cultures of Methylobacterium sp. ZP24. Bioresour Technol 99: 57495755.
  • Noguez, R., Segura, D., Moreno, S., Hernández, A., Juárez, K., and Espín, G. (2008) Enzyme INtr, NPr and IIANtr are involved in regulation of the poly-β-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii. J Mol Microbiol Biotechnol 15: 244254.
  • Olivera, E., Carnicero, D., Jodra, R., Miñambres, B., García, B., Abraham, G., et al. (2001) Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ Microbiol 3: 612618.
  • Osanai, T., Numata, K., Oikawa, A., Kuwahara, A., Iijima, H., Doi, Y., et al. (2013) Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803. DNA Res 20: 525535.
  • Page, W., and Cornish, A. (1993) Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-β-hydroxybutyrate. Appl Microbiol 59: 42364244.
  • Page, W.J., and Knosp, O. (1989) Hyperproduction of poly-β-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 55: 13341339.
  • Page, W.J., Tindale, A., Chandra, M., and Kwon, E. (2001) Alginate formation in I UWD during stationary phase and the turnover of poly-3-hydroxybutyrate. Microbiology 147: 483490.
  • Pan, P., and Inoue, Y. (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34: 605640.
  • Panchal, B., Bagdadi, A., and Roy, I. (2013) Polyhydroxyalkanoates: the natural polymers produced by bacterial fermentation. In Advances in Natural Polymers. Thomas, S. , Visakh, P.M. , and Mathew, A.P. (eds). Berlin Heidelberg, Germany: Springer, pp. 397421.
  • Parlane, N.A., Grage, K., Mifune, J., Randall, J., Basaraba, D., Wedlock, D.N., et al. (2012) Vaccines displaying mycobacterial proteins on biopolyester beads stimulate cellular immunity and induce protection against tuberculosis. Clin Vaccine Immunol 19: 3744.
  • Penloglou, G., Chatzidoukas, C., and Kiparissides, C. (2012a) Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation. Biotechnol Adv 30: 329337.
  • Penloglou, G., Kretza, E., Chatzidoukas, C., Parouti, S., and Kiparissides, C. (2012b) On the control of molecular weight distribution of polyhydroxybutyrate in Azohydromonas lata. Biochem Eng J 62: 3947.
  • Peña, C., Castillo, T., Nuñez, C., and Segura, D. (2011) Bioprocess Design: Fermentation Strategies for Improving the Production of Alginate and Poly-β-Hydroxyalkanoates (PHAs) by Azotobacter vinelandii. Rijeka, Croatia: INTECH- Open Access Publisher, pp. 217242.
  • Peña, C., López, S., García, A., Espín, G., Romo-Uribe, A., and Segura, D. (2014) Biosynthesis of poly-β-hydroxybutyrate (PHB) with a high molecular mass by a mutant strain of Azotobacter vinelandii (OPN). Ann Microbiol 64: 3947.
  • Poli, A., Di Donato, P., Abbamondi, G.R., and Nicolaus, B. (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea. doi:10.1155/2011/693253.
  • Pozo, C., Martínez-Toledo, M.V., Rodelas, B., and González-Lopez, J. (2002) Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechín (wastewater from olive oil mills) as primary carbon source. J Biotechnol 97: 125131.
  • Pradella, J.G.C., Ienczak, J., Romero, C., and Taciro, M. (2012) Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator. Biotechnol Lett 34: 10031007.
  • Quagliano, J., and Miyazaki, S. (1997) Effect of aeration and carbon/nitrogen ratio on the molecular mass of the biodegradable polymer poly-β-hydroxybutyrate obtained from Azotobacter chroococcum 6B. Appl Microbiol Biotechnol 48: 662664.
  • Rajan, R., Sreekumar, P.A., Joseph, K., and Skrifvars, M. (2012) Thermal and mechanical properties of chitosan reinforced polyhydroxybutyrate composites. J Appl Polym Sci 124: 33573362.
  • Ramier, J., Bouderlique, T., Stoilova, O., Manolova, N., Rashkov, I., Langlois, V., et al. (2014) Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nonoparticles for bone tissue engineering applications. Mater Sci Eng C 38: 161169.
  • Reddy, C.S.K., Ghai, R., Rashmi, and Kalia, V.C. (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87: 137146.
  • Rehm, B.H.A. (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376: 1533.
  • Rehm, B.H.A., Krüger, N., and Steinbüchel, A. (1998) A new metabolic link between fatty acid de novo synthesis and Polyhydroxyalkanoic acid synthesis: the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-Coenzyme A transferase. J Biol Chem 273: 2404424051.
  • Ricotti, L., Polini, A., Genchi, G.G., Ciofani, G., Iandolo, D., Vazao, H., et al. (2012) Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomed Mater 7: 035010. doi:10.1088/1748-6041/7/3/035010.
  • Rocha, R.C.S., Silva, L.F., Taciro, M.K., and Pradella, J.G.C. (2008) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) with a broad range of 3HV content at high yields by Burkholderia sacchari IPT 189. World J Microbiol Biotechnol 24: 427431.
  • Rodriguez-Valera, F., and Lillo, J. (1992) Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiol Lett 103: 181186.
  • Ruan, W., Chen, J., and Lun, S. (2003) Production of biodegradable polymer by A. eutrophus using volatile fatty acids from acidified waste water. Process Biochem 39: 295299.
  • Segura, D., and Espín, G. (1998) Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-β-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J Bacteriol 180: 47904798.
  • Segura, D., and Espín, G. (2004) Inactivation of pycA, encoding pyruvate carboxylase activity, increases poly-beta-hydroxybutyrate accumulation in Azotobacter vinelandii on solid medium. Appl Microbiol Biotechnol 65: 414418.
  • Segura, D., Guzmán, J., and Espín, G. (2003) Azotobacter vinelandii mutants that overproduce poly-β-hydroxybutyrate or alginate. Appl Microbiol Biotechnol 63: 159163.
  • Senior, P., and Dawes, E. (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinkii. Biochem J 134: 225238.
  • Senior, P., Beech, G., Ritchie, G., and Dawes, E. (1972) The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem J 128: 11931201.
  • Sharma, L., Yoshino, O., Toshiji, K., Tadahisa, I., and Yoshiharu, D. (2004) Fiber formation in medium and ultra high molecular weight Polyhydroxybutyrate blends under shear flow. Macromol Mater Eng 289: 10681073.
  • Shishatskaya, E., Khilusov, I.A., and Volova, T. (2006) A hybrid PHB-hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation. J Biomater Sci Polym Ed 17: 481498.
  • Shishatskaya, E., Goreva, A., Kalacheva, G., and Volova, T. (2011) Biocompatibility and resorption of intravenously administered polymer microparticles in tissues of internal organs of laboratory animals. J Biomater Sci 22: 21852203.
  • da Silva-Valenzuela, M.D.G., Wang, S.H., Wiebeck, H., and Valenzuela-Díaz, F.R. (2010) Nanocomposite microcapsules from powders of polyhydroxybutyrate (PHB) and smectite clays. Mat Sci Forum 660–661: 794798.
  • Slater, S.C., Voige, W.H., and Dennis, D.E. (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170: 44314436.
  • Steinbüchel, A., and Lütke-Eversloh, T. (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16: 8196.
  • Stubbe, J., Tian, J., He, A., Sinskey, A., Lawrence, A., and Liu, P. (2005) Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annu Rev Biochem 74: 433480.
  • Sudesh, K., Abe, H., and Doi, Y. (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25: 15031555.
  • Tanadchangsaeng, N., and Yu, J. (2012) Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester. Biotechnol Bioeng 109: 28082818.
  • Tsuge, T., Taguchi, K., Taguchi, S., and Doi, Y. (2003) Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid β-oxidation. Int J Biol Macromol 31: 195205.
  • Volova, T.G., Zhila, N.O., Shishatskaya, E.I., Mironov, P.V., Vasil'ev, A.D., Sukovatyi, A.G., and Sinskey, A.J. (2013) The physicochemical properties of polyhydroxyalkanoates with different chemical structures. Polym Science Ser A 55: 427437.
  • Wang, J., and Yu, J. (2001) Kinetic analysis on formation of Poly(3-hydroxybntrate) by Ralstonia eutropha under chemically defined conditions. J Ind Microbiol Biotechnol 26: 121126.
  • Wang, Q., Zhuang, Q., Liang, Q., and Qi, Q. (2013) Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli. Appl Microbiol Biotechnol 97: 33013307.
  • Williams, S., and Martin, D. (2005) Applications of polyhydroxyalkanoates (PHA) in medicine and pharmacy. Biolymers Online. doi:10.1002/3527600035.bpol4004.
  • Zafar, M., Kumar, S., and Dhiman, A. (2012a) Optimization of poly(3-hydroxybutyrateco- 3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 by using genetic algorithm on artificial neural network on response surface methodology. Biocatal Agric Biotechnol 1: 7079.
  • Zafar, M., Kumar, S., and Dhiman, A. (2012b) Artificial intelligence based modeling and optimization of poly(3-hydroxybutyrateco- 3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 from cane molasses supplemented with volatile fatty acids: a genetic algorithm paradigm. Bioresour Technol 104: 631641.
  • Zheng, Z., Li, M., Xue, X.-J., Tian, H.-L., Li, Z., and Chen, G.-Q. (2006) Mutation on N-terminus of polyhydroxybutyrate synthase of Ralstonia eutropha enhanced PHB accumulation. Appl Microbiol Biotechnol 72: 896905.