SEARCH

SEARCH BY CITATION

References

  • Ashiuchi, M. (2013) Microbial production and chemical transformation of poly-γ-glutamate. Microb Biotechnol 6: 664674.
  • Ashiuchi, M., and Misono, H. (2002) Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl Biochem Biotechnol 59: 914.
  • Ashiuchi, M., Shimanouchi, K., Horiuchi, T., Kamei, T., and Misono, H. (2006) Genetically engineered poly-γ-glutamate producer from Bacillus subtilis ISW1214. Biosci Biotechnol Biochem 70: 17941797.
  • Bajaj, I.B., and Singhal, R.S. (2009) Enhanced production of poly (γ-glutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors. Appl Biochem Biotechnol 159: 133141.
  • Bisicchia, P., Noone, D., Lioliou, E., Howell, A., Quigley, S., Jensen, T., et al. (2007) The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 65: 180200.
  • Branda, S.S., González-Pastor, J.E., Ben-Yehuda, S., Losick, R., and Kolter, R. (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98: 1162111626.
  • Branda, S.S., Gonzalez-Pastor, J.E., Dervyn, E., Ehrlich, S.D., Losick, R., and Kolter, R. (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186: 39703979.
  • Branda, S.S., Vik, S., Friedman, L., and Kolter, R. (2005) Biofilms: the matrix revisited. Trends Microbiol 13: 2026.
  • Branda, S.S., Chu, F., Kearns, D.B., Loslck, R., and Kolter, R.A. (2006) Major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59: 12291238.
  • Cao, M.F., Song, C.J., Jin, Y.H., Liu, L., Liu, J., Xie, H., et al. (2010) Synthesis of poly(γ-glutamic acid) and heterologous expression of pgsBCA genes. BJ Mol Catal B 67: 111116.
  • Cao, M.F., Geng, W.T., Liu, L., Song, C.J., Xie, H., Guo, W.B., et al. (2011) Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour Technol 102: 42514257.
  • Cao, M.F., Geng, W.T., Zhang, W., Sun, J.B., Wang, S.F., Feng, J., et al. (2013) Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA. Microb Biotechnol 6: 675684.
  • Celik, G.Y., Aslim, B., and Beyatli, Y. (2008) Characterization and production of the exopolysaccharide (EPS) from Pseudomonas aeruginosa G1 and Pseudomonas putida G12 strains. Carbohydr Polym 73: 178182.
  • Choi, S.J., Kim, M., Kim, S.I., and Jeon, J.K. (2003) Microplate assay measurement of cytochrome p450-carbon monoxide complexes. J Biochem Mol Biol 36: 332335.
  • Domínguez-Cuevas, P., Porcelli, I., Daniel, R.A., and Errington, J. (2013) Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis. Mol Microbiol 89: 10841098.
  • Donot, F., Fontana, A., Baccou, J.C., and Schorr-Galindo, S. (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87: 951962.
  • DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1951) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350356.
  • Feng, J., Gu, Y.Y., Wang, J.Q., Song, C.J., Yang, C., Xie, H., et al. (2013) Curing the plasmid pMC1 from the poly (γ-glutamic acid) producing Bacillus amyloliquefaciens LL3 strain using plasmid incompatibility. Appl Biochem Biotechnol 171: 532542.
  • Feng, J., Gao, W.X., Gu, Y.Y., Zhang, W., Cao, M.F., Song, C.J., et al. (2014) Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Appl Microbiol Biotechnol. doi: 10.1007/s00253-014-5729-0.
  • Frey, A.D., and Kallio, P.T. (2003) Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol Rev 27: 525545.
  • Huang, B., Qin, P., Xu, Z., Zhu, R., and Meng, Y. (2011) Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis CGMCC 2108 producing poly-(γ-glutamic acid). Bioresour Technol 102: 35953598.
  • Kalogiannis, S., Iakovidou, G., Liakopoulou-Kyriakides, M., Kyriakidis, D.A., and Skaracis, G.N. (2003) Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem 39: 249256.
  • Kang, D.G., Kim, J.Y.H., and Cha, H.J. (2002) Enhanced detoxification of organophosphates using recombinant Escherichia coli with co-expression of organophosphorus hydrolase and bacterial hemoglobin. Biotechnol Lett 24: 879883.
  • Kearns, D.B., Chu, F., Branda, S.S., Kolter, R., and Losick, R. (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55: 739749.
  • Keller, K.L., Bender, K.S., and Wall, J.D. (2009) Development of a markerless genetic exchange system for Desulfovibrio vulgaris Hildenborough and its use in generating a strain with increased transformation efficiency. Appl Environ Microbiol 75: 76827691.
  • Kimura, K., Tran, L.S., Uchida, I., and Itoh, Y. (2004) Characterization of Bacillus subtilis gamma-glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate. Microbiology 150: 41154123.
  • Kubota, H., Matsunobu, T., Uotani, K., Takebe, H., Satoh, A., Tanaka, T., et al. (1993) Production of poly(γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci Biotech Biochem 57: 12121213.
  • Liu, C.Y., and Webster, D.A. (1974) Spectral characteristics and interconversions of the reduced, oxidized, and oxygenated forms of purified cytochrome o. J Biol Chem 249: 42614266.
  • Liu, J., Ma, X., Wang, Y., Liu, F., Qia, J.Q., Li, X.Z., et al. (2011) Depressed biofilm production in Bacillus amyloliquefaciens C06 causes γ-polyglutamic acid (γ-PGA) overproduction. Curr Microbiol 62: 235241.
  • Marvasi, M., Visscher, P.T., and Martinez, L.C. (2010) Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS Microbiol Lett 313: 19.
  • Mitsui, N., Murasawa, H., and Sekiguchi, J. (2011) Disruption of the cell wall lytic enzyme CwlO affects the amount and molecular size of poly-γ-glutamic acid produced by Bacillus subtilis (natto). J Gen Appl Microbiol 57: 3543.
  • Olano, C., Lombo, F., Mendez, C., and Salas, J.A. (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10: 281292.
  • Park, K.W., Kim, K.J., Howard, A.J., Stark, B.C., and Webster, D.A. (2002) Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. J Biol Chem 277: 3333433337.
  • Scoffone, V., Dondi, D., Biino, G., Borghese, G., Pasini, D., Galizzi, A., and Calvio, C. (2013) Knockout of pgdS and ggt genes improves γ-PGA yield in B. subtilis. Biotechnol Bioeng 110: 20062012.
  • Shih, I.L., and Van, Y.T. (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79: 207225.
  • Shih, I.L., Yu, J.Y., Hsieh, C., and Wu, J.Y. (2009) Production and characterization of curdlan by Agrobacterium sp. Biochem Eng J 43: 3340.
  • Shih, I.L., Chen, L.D., and Wu, J.Y. (2010) Levan production using Bacillus subtilis natto cells immobilized on alginate. Carbohydr Polym 82: 111117.
  • Smith, K., and Youngman, P. (1992) Use a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74: 705711.
  • Smith, T.J., Blackman, S.A., and Foster, S.J. (2000) Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146: 249262.
  • Su, Y., Li, X., Liu, Q., Hou, Z., Zhu, X., Guo, X., and Ling, P. (2010) Improved poly-γ-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresour Technol 101: 473476.
  • Sung, M.H., Park, C., Kim, C.J., Poo, H., Soda, K., and Ashiuchi, M. (2005) Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. Chem Rec 5: 352366.
  • Urgun-Demirtas, M., Pagilla, K.R., Stark, B.C., and Webster, D. (2003) Biodegradation of 2-chlorobenzoate by recombinant Burkholderia cepacia expressing Vitreoscilla hemoglobin under variable levels of oxygen availability. Biodegradation 14: 357365.
  • Vollmer, W., Joris, B., Charlier, P., and Foster, S. (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32: 259286.
  • Wakabayashi, S., Matsubara, H., and Webster, D.A. (1986) Primary sequence of a dimeric bacterial hemoglobin from Vitreoscilla. Nature 322: 481483.
  • Wang, P.Z., and Dio, R.H. (1984) Overlapping promoters transcribed by Bacillus subtilis σ55 and σ37 RNA polymerase holoenzymes during growth and stationary phase. J Biol Chem 259: 86198625.
  • Yamaguchi, H., Furuhata, K., Fukushima, T., Yamamoto, H., and Sekiguchi, J. (2004) Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE (named cwlO), and the enzymatic properties of its encoded protein. J Biosci Bioeng 98: 174181.
  • Zhang, L., Li, Y., Wang, Z., Xia, Y., Chen, W., and Tang, K. (2007) Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv 25: 123136.
  • Zhang, W., Xie, H., He, Y., Feng, J., Gao, W.X., Gu, Y.Y., et al. (2013) Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens. FEMS Microbiol Lett 343: 127134.