Get access

Developing genomic resources for the common bottlenose dolphin (Tursiops truncatus): isolation and characterization of 153 single nucleotide polymorphisms and 53 genotyping assays

Authors

  • N. L. Vollmer,

    1. Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
    2. NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, Lafayette, LA 70506, USA
    Search for more papers by this author
  • P. E. Rosel

    Corresponding author
    1. NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, Lafayette, LA 70506, USA
    Search for more papers by this author

Abstract

Although single nucleotide polymorphisms (SNPs) are commonly used in human genetics, they have only recently been incorporated into genetic studies of non-model organisms, including cetaceans. SNPs have several advantages over other molecular markers for studies of population genetics: they are quicker and more straightforward to score, cross-laboratory comparisons of data are less complicated, and they can be used successfully with low-quality DNA. We screened portions of the genome of one of the most abundant cetaceans in U.S. waters, the common bottlenose dolphin (Tursiops truncatus), and identified 153 SNPs resulting in an overall average of one SNP every 463 base pairs. Custom TaqMan® Assays were designed for 53 of these SNPs, and their performance was tested by genotyping a set of bottlenose dolphin samples, including some with low-quality DNA. We found that in 19% of the loci examined, the minor allele frequency (MAF) estimated during initial SNP ascertainment using a DNA pool of 10 individuals differed significantly from the final MAF after genotyping over 100 individuals, suggesting caution when making inferences about MAF values based on small data sets. For two assays, we also characterized the basis for unusual clustering patterns to determine whether their data could still be utilized for further genetic studies. Overall results support the use of these SNPs for accurate analysis of both poor and good-quality DNA. We report the first SNP markers and genotyping assays for use in population and conservation genetic studies of bottlenose dolphins.

Get access to the full text of this article

Ancillary