Noninvasive individual and species identification of jaguars (Panthera onca), pumas (Puma concolor) and ocelots (Leopardus pardalis) in Belize, Central America using cross-species microsatellites and faecal DNA



There is a great need to develop efficient, noninvasive genetic sampling methods to study wild populations of multiple, co-occurring, threatened felids. This is especially important for molecular scatology studies occurring in challenging tropical environments where DNA degrades quickly and the quality of faecal samples varies greatly. We optimized 14 polymorphic microsatellite loci for jaguars (Panthera onca), pumas (Puma concolor) and ocelots (Leopardus pardalis) and assessed their utility for cross-species amplification. Additionally, we tested their reliability for species and individual identification using DNA from faeces of wild felids detected by a scat detector dog across Belize in Central America. All microsatellite loci were successfully amplified in the three target species, were polymorphic with average expected heterozygosities of HE = 0.60 ± 0.18 (SD) for jaguars, HE = 0.65 ± 0.21 (SD) for pumas and HE = 0.70 ± 0.13 (SD) for ocelots and had an overall PCR amplification success of 61%. We used this nuclear DNA primer set to successfully identify species and individuals from 49% of 1053 field-collected scat samples. This set of optimized microsatellite multiplexes represents a powerful tool for future efforts to conduct noninvasive studies on multiple, wild Neotropical felids.