In this study, the utilization of bioluminescence imaging (BLI) allowed us to define the progression of Yersinia ruckeri during the infection of rainbow trout. A luminescent Y. ruckeri 150 strain was engineered using the pCS26-Pac plasmid containing the lux operon from Photorhabdus luminescens. Two different models of infection of rainbow trout were defined depending on the route in which bacteria were administered, being the gut the major organ affected following bath immersion. This indicates that this organ is important for bacterial dissemination inside the fish and the establishment of the infection. Moreover, the expression of three previously selected operons by in vivo expression technology (IVET) was analysed, the yhlBA involved in the production of a haemolysin, the cdsAB related to the uptake of cysteine and the yctCBA implicated in citrate uptake. Apart from these factors, the expression of yrp1 encoding a serralysin metalloprotease involved in pathogenesis was also analysed. The results indicated that all of the assayed promoters were expressed during infection of rainbow trout. In addition to these findings, the methodology described in this work constitutes a useful model for studying the infection process in other fish pathogenic bacteria.