SEARCH

SEARCH BY CITATION

References

  • Acerbi, A. & Nunn, C.L. (2011) Predation and the phasing of sleep: an evolutionary individual-based model. Animal Behaviour, 81, 801811.
  • Arbilly, M., Motro, U., Feldman, M.W. & Lotem, A. (2010) Co-evolution of learning complexity and social foraging strategies. Journal of Theoretical Biology, 267, 573581.
  • Arbilly, M., Motro, U., Feldman, M.W. & Lotem, A. (2011) Recombination and the evolution of coordinated phenotypic expression in a frequency-dependent game. Theoretical Population Biology, 80, 244255.
  • Axelrod, R. (1984) The Evolution of Cooperation. Basic Books, New York, NY.
  • Axelrod, R. & Hamilton, W.D. (1981) The evolution of cooperation. Science, 211, 13901396.
  • Axelrod, R. (1997) The Complexity of Cooperation: Agent-based Models of Competition and Collaboration. Princeton University Press, Princeton, NJ.
  • Bäck, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press, Oxford.
  • Barta, Z., Flynn, R. & Giraldeau, L.A. (1997) Geometry for a selfish foraging group: a genetic algorithm approach. Proceedings of the Royal Society of London. Series B, Biological Sciences, 264, 12331238.
  • Beauchamp, G. (2000) Learning rules for social foragers: implications for the producer-scrounger game and ideal free distribution theory. Journal of Theoretical Biology, 207, 2135.
  • Beauchamp, G. (2008) A spatial model of producing and scrounging. Animal Behaviour, 76, 19351942.
  • Beauchamp, G. & Ruxton, G.D. (2005) Harvesting resources in groups or alone: the case of renewing patches. Behavioral Ecology, 16, 989993.
  • Beauchamp, G. & Ruxton, G.D. (2007) False alarms and the evolution of antipredator vigilance. Animal Behaviour, 74, 11991206.
  • Beck, C., Shapiro, B., Choksi, S. & Promislow, D.E.L. (2002) A genetic algorithm approach to study the evolution of female preference based on male age. Evolutionary Ecology Research, 4, 275292.
  • Blum, C. & Roli, A. (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. Association for Computing Machinery, 35, 268308. URLhttp://doi.acm.org/10.1145/937503.937505.
  • Bond, A.B. & Kamil, A.C. (2002) Visual predators select for crypticity and polymorphism in virtual prey. Nature, 415, 609612.
  • Bouskila, A., Robinson, M.E., Roitberg, B.D. & Tenhumberg, B. (1998) Life-history decisions under predation risk: importance of a game perspective. Evolutionary Ecology, 12, 701715.
  • Burrow, J.F., Horwood, J.W. & Pitchford, J.W. (2011) The importance of variable timing and abundance of prey for fish larval recruitment. Journal of Plankton Research, 33, 11531162.
  • Collins, E.J., McNamara, J.M. & Ramsey, D.M. (2006) Learning rules for optimal selection in a varying environment: mate choice revised. Behavioral Ecology, 17, 799809.
  • Colman, A.M. & Browning, L. (2009) Evolution of cooperative turn-taking. Evolutionary Ecology Research, 11, 949963.
  • Correia, L. (2010) Computational evolution: taking liberties. Theory in Biosciences, 129, 183191.
  • Cressler, C.E., King, A.A. & Werner, E.E. (2010) Interactions between behavioral and life-history trade-offs in the evolution of integrated predator-defense plasticity. The American Naturalist, 176, 276288.
  • Crowley, P.H., Provencher, L., Sloane, S., Dugatkin, L.A., Spohn, B., Rogers, L. & Alfieri, M. (1996) Evolving cooperation: the role of individual recognition. Biosystems, 37, 4966.
  • Davidor, Y. (1991) Epistasis variance: a viewpoint on GA-hardness. Fundamentals of Genetic Algorithms, vol. 1 (ed G.J.E. Rawlins), pp. 2335. chap. 2. Morgan Kaufmann, San Mateo.
  • De Jong, K. (2007) Parameter setting in EAs: a 30 year perspective. Parameter setting in evolutionary algorithms, (eds F.G. Lobo, C.F. Lima & Z. Michalewicz), pp. 118. Springer, Berlin.
  • Engqvist, L. & Reinhold, K. (2006) Theoretical influence of female mating status and remating propensity on male sperm allocation patterns. Journal of Evolutionary Biology, 19, 14481458.
  • Engqvist, L. & Reinhold, K. (2007) Sperm competition games: optimal sperm allocation in response to the size of competing ejaculates. Proceedings of the Royal Society of London. Series B, Biological Sciences, 274, 209217.
  • Eshel, I. (1983) Evolutionary and continuous stability. Journal of Theoretical Biology, 103, 99111.
  • Flood, M.M. (1952) Some Experimental Games. Research Memorandum rm-789. Tech. rep. Rand Corporation, Santa Monica, CA.
  • Goldberg, D.E. (1989) Genetic Algorithms in Seach, Optimization, and Machine Learning. Addison-Wesley, Reading, MA.
  • Grimm, V. & Railsback, S.F. (2005) Individual-based Modeling and Ecology. Princeton University Press, Princeton, NJ.
  • Haferlach, T., Wessnitzer, J., Mangan, M. & Webb, B. (2007) Evolving a neural model of insect path integration. Adaptive Behavior, 15, 273287.
  • Hamblin, S. & Giraldeau, L.A. (2009) Finding the evolutionarily stable learning rule for frequency-dependent foraging. Animal Behaviour, 78, 13431350.
  • Hamblin, S. & Hurd, P.L. (2007) Evolution's strategies: genetic algorithms and game theory models. Animal Behaviour, 74, 10051018.
  • Hamblin, S. & Hurd, P.L. (2009) When will evolution lead to deceptive signaling in the Sir Philip Sidney game? Theoretical Population Biology, 75, 176182.
  • Hamblin, S., Mathot, K.J., Morand-Ferron, J., Nocera, J.J., Rieucau, G. & Giraldeau, L.A. (2009) Predator inadvertent social information use favours reduced clumping of its prey. Oikos, 119, 286291.
  • Hancock, P.A., Milner-Gulland, E.J. & Keeling, M.J. (2006) Modelling the many-wrongs principle: the navigational advantages of aggregation in nomadic foragers. Journal of Theoretical Biology, 240, 302310.
  • Heinz, S.K. & Strand, E. (2006) Adaptive patch searching strategies in fragmented landscapes. Evolutionary Ecology, 20, 113130.
  • Hillis, D.W. (1990) Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D, 42, 228234.
  • Hofbauer, J. & Sigmund, K. (1998) Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, UK.
  • Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI.
  • Huse, G., Strand, E. & Giske, J. (1999) Implementing behaviour in individual-based models using neural networks and genetic algorithms. Evolutionary Ecology, 13, 469483.
  • Judson, O.P. & Haydon, D. (1999) The genetic code: what is it good for? an analysis of the effects of selection pressures on genetic codes. Journal of Molecular Evolution, 49, 539550.
  • Koza, J.R. (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA.
  • Lima, S.L. (1994) Collective detection of predatory attack by birds in the absence of alarm signals. Journal of Avian Biology, 25, 319326.
  • Luke, S. (2009) Essentials of Metaheuristics. Lulu. Available for free at http:/cs.gmu.edu/~sean/book/metaheuristics/.
  • Maynard Smith, J. (1982) Evolution and the Theory of Games. Cambridge University Press, New York, NY. ISBN 0-521-28884-3.
  • Mitchell, M. (1998) An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.
  • Mitchell, W.A. (2009) Multi-behavioral strategies in a predator-prey game: an evolutionary algorithm analysis. Oikos, 118, 10731083.
  • Mühlenbein, H. & Schlierkamp-Voosen, D. (1995) Analysis of selection, mutation, and recombination in genetic algorithms. Evolution as a Computational Process, (eds W. Banzhaf& F.H. Eeckman), pp. 188213. Springer, Berlin.
  • Niv, Y., Joel, D., Meilijson, I. & Ruppin, E. (2002) Evolution of reinforcement learning in uncertain environments: a simple explanation for complex foraging behaviors. Adaptive Behavior, 10, 524.
  • Nowak, M. (1990) An evolutionarily stable strategy may be inaccessible. Journal of Theoretical Biology, 142, 237241.
  • Poli, R., Wright, A., McPhee, N. & Langdon, W. (2006) Emergent behaviour, population-based search and low-pass filtering. IEEE Congress on Evolutionary Computation, 2006. pp. 8895.
  • Proctor, C.J., Broom, M. & Ruxton, G.D. (2001) Modelling antipredator vigilance and flight response in group foragers when warning signals are ambiguous. Journal of Theoretical Biology, 211, 409417.
  • Reinhold, K., Kurtz, J. & Engqvist, L. (2002) Crypic male choice: sperm allocation strategies when female quality varies. Journal of Evolutionary Biology, 15, 201209.
  • Richter, J.N. (2010) On Mutation and Crossover in the Theory of Evolutionary Algorithms. PhD thesis, Montana State University, Bozeman.
  • Ruxton, G.D. & Beauchamp, G. (2008) The application of genetic algorithms in behavioural ecology, illustrated with a model of anti-predator vigilance. Journal of Theoretical Biology, 250, 435448.
  • Sherratt, T.N. & Roberts, G. (1998) The evolution of generosity and choosiness in cooperative exchanges. Journal of Theoretical Biology, 193, 167177.
  • Spears, W.M., Pears, E.m. & Mil, A.N.N. (1992) Crossover or Mutation? Foundations of Genetic Algorithms 2. Morgan Kaufmann, ??????. pp. 221–237.
  • Srinivas, M. & Patnaik, L. (1994) Adaptive probabilities of crossover and mutation in genetic algorithms. Systems, Man and Cybernetics, IEEE Transactions on, 24, 656 667.
  • Strand, E., Huse, G. & Giske, J. (2002) Artifical evolution of life history and behavior. The American Naturalist, 159, 624644.
  • Sumida, B.H., Houston, A.I., McNamara, J.M. & Hamilton, W.D. (1990) Genetic algorithms and evolution. Journal of Theoretical Biology, 147, 5984.
  • Syswerda, G. (1991) A study of reproduction in generational and steady-state genetic algorithms. Foundations of Genetic Algorithms, vol. 1 (ed G.J.E. Rawlins), pp. 94101. chap. 6. Morgan Kaufmann, ???????.
  • Tang, G., Lin, P., Xu, C., Xue, J., Liu, T., Wang, Z. & Li, X. (2011) Optimal selection for multiple quantitative trait loci and contributions of individuals using genetic algorithm. Livestock Science, 141, 242251.
  • Thibert-Plante, X. & Charbonneau, P. (2007) Crossover and evolutionary stability in the Prisoner's Dilemma. Evolutionary Computation, 15, 321344.
  • Thomson Scientific (2011) ISI Web of Science. http://apps.isiknowledge.com/.
  • Whitlock, M.C. (2011) Data archiving in ecology and evolution: best practices. Trends in Ecology & Evolution, 26, 6165.
  • Whitlock, M.C., Phillips, P.C., Moore, F.B. & Tonsor, S.J. (1995) Multiple fitness peaks and epistasis. Annual Review of Ecology and Systematics, 26, 601629.
  • Wild, G. (2011) Direct fitness for dynamic kin selection. Journal of Evolutionary Biology, 24, 15981610.
  • Wiles, J., Watson, J., Tonkes, B. & Deacon, T. (2005) Transient phenomena in learning and evolution: genetic assimilation and genetic redistribution. Artificial Life, 11, 177188.
  • Yamauchi, H. & Hashimoto, T. (2010) Relaxation of selection, niche construction, and the Baldwin effect in langauge evolution. Artificial Life, 16, 271287.
  • Zhu, Q., Moser, M. & Kemp, P. (2011) Numerical analysis of a unique mode of locomotion: vertical climbing by Pacific lamprey. Bioinspiration & Biomimetics, 6, 016005.