SEARCH

SEARCH BY CITATION

References

  • Adkison, M.D. (2009) Drawbacks of complex models in frequentist and Bayesian approaches to natural-resource management. Ecological Applications, 19, 198205.
  • Bolker, B.M. (2008) Ecological Models and Data in R. Princeton University Press, Princeton, NJ, USA.
  • Bolker, B. (2009) Learning hierarchical models: advice for the rest of us. Ecological Applications, 19, 588592.
  • Breiman, L. (2001) Statistical modeling: The two cultures. Statistical Science, 16, 199215.
  • Clark, J.S. (2007) Models for Ecological Data: An Introduction. Princeton University Press, Princeton, NJ, USA.
  • Cole, D.J., Morgan, B.J.T. & Titterington, D.M. (2010) Determining the parametric structure of non-linear models. Mathematical Biosciences, 228, 1630.
  • Crawley, M.J. (2002) Statistical Computing: An Introduction to Data Analysis Using S-PLUS. Wiley, Chichester.
  • Crawley, M.J. (2005) Statistics: An Introduction Using R. Wiley, Chichester.
  • Crawley, M.J. (2007) The R Book, 1st edn. Wiley, Chichester.
  • Diggle, P.J. & Ribeiro Jr, P.J. (2007) Model-Based Geostatistics. Springer, New York, NY, USA.
  • Eidsvik, J., Finley, A.O., Banerjee, S. & Rue, H. (2012) Approximate Bayesian inference for large spatial datasets using predictive process models. Computational Statistics and Data Analysis, 56, 13621380.
  • Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A. & Sibert, J. (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software, 27, 233249.
  • Gelman, A. & Hill, J. (2006) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge, UK.
  • Gelman, A., van Dyk, D.A., Huang, Z. & Boscardin, J.W. (2008) Using redundant parameterizations to fit hierarchical models. Journal of Computational and Graphical Statistics, 17, 95122.
  • Gotelli, N.J. & Ellison, A.M. (2004) A Primer of Ecological Statistics. Sinauer, Sunderland, MA.
  • Griewank, A. & Corliss, G.F. (1992) Automatic Differentiation of Algorithms: Theory, Implementation, and Application. SIAM, Philadelphia, PA, USA.
  • Hall, B. (2012) LaplacesDemon: Complete Environment for Bayesian Inference. R package version 12.10.01. URL http:http://cran.r-project.org/web/packages/LaplacesDemon/
  • Hilborn, R. & Mangel, M. (1997) The Ecological Detective: Confronting Models with Data. Princeton University Press, Princeton, NJ, USA.
  • Hobbs, N.T. & Hilborn, R. (2006) Alternatives to statistical hypothesis testing in ecology: A guide to self teaching. Ecological Applications, 16, 519.
  • Hughes, A.W. (2003) Model selection using AIC in the presence of one-sided information. Journal of Statistical Planning and Inference, 115, 397411.
  • Ionides, E.L., Bretó, C. & King, A.A. (2006) Inference for nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 103, 1843818443.
  • Jones, O., Maillardet, R. & Robinson, A. (2009) Introduction to Scientific Programming and Simulation Using R, 1st edn. Chapman & Hall/CRC, Boca Raton, FL, USA.
  • Kéry, M. & Schaub, M. (2012) Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective. Academic Press, Waltham, MA, USA.
  • King, R., Morgan, B.M., Gimenez, O. & Brooks, S. (2009) Bayesian Analysis of Population Ecology. Chapman & Hall/CRC, Boca Raton, FL, USA.
  • Kristensen, N.R., Madsen, H. & Jørgensen, S.B. (2004) Parameter estimation in stochastic grey-box models. Automatica, 40, 225237.
  • Lele, S.R. (2007) Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. Ecology Letters, 10, 551563.
  • Lele, S., Nadeem, K. & Schmuland, B. (2010) Estimability and likelihood inference for generalized linear mixed models using data cloning. Journal of the American Statistical Association, 105, 16171625.
  • Link, W. & Barker, R. (2010) Bayesian Inference with Ecological Applications. Academic Press, London.
  • Ludwig, D. & Walters, C.J. (1985) Are age-structured models appropriate for catch-effort data? Canadian Journal of Fisheries and Aquatic Sciences, 42, 10661072.
  • Lunn, D. (2009) The BUGS project: Evolution, critique and future directions. Statistics in Medicine, 28, 30493067.
  • Lunn, D., Jackson, C., Best, N., Thomas, A. & Spiegelhalter, D. (2012) The BUGS Book: A Practical Introduction to Bayesian Analysis, 1st edn. Chapman & Hall/CRC, Boca Raton, FL, USA.
  • Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X. & Zhang, L. (2009) Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models. Ecological Applications, 19, 571574.
  • Magnusson, A. (2009) ADMB-IDE: Easy and efficient user interface. ADMB Foundation Newsletter, 1, 12.
  • Maunder, M.N., Schnute, J.T. & Ianelli, J.N. (2009) Computers in fisheries population dynamics. Computers in Fisheries Research (eds B.A. Megrey & E. Moksness), pp. 337372. Springer Netherlands, Dordrecht, Netherlands.
  • McCarthy, M. (2007) Bayesian Methods for Ecology. Cambridge University Press, Cambridge.
  • McCullagh, P. & Nelder, J.A. (1989) Generalized Linear Models, 2nd edn. Chapman and Hall, London.
  • McCullough, B.D. (2004) Some details of nonlinear estimation. Numerical Issues in Statistical Computing for the Social Scientist, chapter 8 (eds M. Altman, J. Gill & M.P. McDonald), pp. 199218. Wiley, Chichester.
  • Millar, R.B. (2011) Maximum Likelihood Estimation and Inference: With Examples in R, SAS and ADMB. John Wiley & Sons, Hoboken, NJ, USA.
  • Murtaugh, P.A. (2007) Simplicity and complexity in ecological data analysis. Ecology, 88, 5662.
  • Nash, J.C. & Varadhan, R. (2011) Unifying optimization algorithms to aid software system users: optimx for R. Journal of Statistical Software, 43, 114.
  • Nash, J.C. & Walker-Smith, M. (1987) Nonlinear Parameter Estimation: An Integrated System in BASIC. Marcel Dekker Inc., New York, NY, USA. Republished combined with the previous item in electronic form by Nash Information Services Inc., Ottawa, Canada, 1996.
  • O'Hara, R.B. & Kotze, D.J. (2010) Do not log-transform count data. Methods in Ecology and Evolution, 1, 118122.
  • Pedersen, M., Berg, C., Thygesen, U., Nielsen, A. & Madsen, H. (2011) Estimation methods for nonlinear state-space models in ecology. Ecological Modelling, 222, 13941400.
  • Peng, R.D. (2009) Reproducible research and biostatistics. Biostatistics, 10, 405408.
  • Persson, L., Leonardsson, K., de Roos, A.M., Gyllenberg, M. & Christensen, B. (1998) Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theoretical Population Biology, 54, 270293.
  • Pinheiro, J.C. & Bates, D.M. (2000) Mixed-Effects Models in S and S-PLUS. Springer, New York, NY, USA.
  • Ponciano, J.M., Taper, M.L., Dennis, B. & Lele, S.R. (2009) Hierarchical models in ecology: confidence intervals, hypothesis testing, and model selection using data cloning. Ecology, 90, 356362.
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (2007) Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge.
  • Quinn, G.P. & Keough, M.J. (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, UK.
  • Reimann, C., Filzmoser, P., Garrett, R. & Dutter, R. (2008) Statistical Data Analysis Explained: Applied Environmental Statistics with R. Wiley, Chichester, UK.
  • Royle, J. & Dorazio, R. (2008) Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities. Academic Press, New York, NY, USA.
  • Ruiz-Cárdenas, R., Krainski, E.T. & Rue, H. (2012) Direct fitting of dynamic models using integrated nested Laplace approximations: INLA. Computational Statistics and Data Analysis, 56, 18081828.
  • Schielzeth, H. (2010) Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1, 103113.
  • Skaug, H. & Fournier, D. (2006) Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models. Computational Statistics and Data Analysis, 51, 699709.
  • Soetaert, K. & Herman, P.M.J. (2008) A Practical Guide to Ecological Modelling: Using R as a Simulation Platform, 1st edn. Springer, New York, NY, USA.
  • Sólymos, P. (2010) dclone: Data cloning in R. The R Journal, 2, 2937.
  • Spiegelhalter, D.J., Best, N., Carlin, B.P. & Van der Linde, A. (2002) Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society B, 64, 583640.
  • Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. (2011) OpenBUGS User Manual, 3rd edn. URL http://www.openbugs.info/Manuals/Manual.html. Retrieved 17 Nov 2011.
  • Stevens, M.H.H. (2009) A Primer of Ecology with R. Use R. Springer, New York, NY, USA.
  • Underwood, A.J. (1996) Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge, UK.
  • Uriarte, M. & Yackulic, C.B. (2009) Preaching to the unconverted. Ecological Applications, 19, 592596.
  • de Valpine, P. (2003) Better inferences from population-dynamics experiments using Monte Carlo state-space likelihood methods. Ecology, 84, 30643077.
  • Vonesh, J.R. & Bolker, B.M. (2005) Compensatory larval responses shift tradeoffs associated with predator-induced hatching plasticity. Ecology, 86, 15801591.
  • Warton, D.I. & Hui, F.K.C. (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology, 92, 310.
  • Wood, S.N. (2006) Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC, Boca Raton, FL, USA.
  • Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. & Smith, G.M. (2009) Mixed Effects Models and Extensions in Ecology with R, 1st edn. Springer, New York, NY, USA.