SEARCH

SEARCH BY CITATION

References

  • Albert, J. & Chib, S. (1993) Bayesian analysis of binary and polychotomous data. Journal of the American Statistical Association, 88, 669679.
  • Anselme, L. & Durand, J. (2012) The Cory's Shearwater Calonectris diomedea diomedea, updated state of knowledge and conservation of the nesting populations of the small Mediterranean Islands. Monography Initiative PIM, Conservatoire d'Espaces Naturels de Provence Alpes Côtes d'Azur.
  • Arah, O. (2008) The role of causal reasoning in understanding Simpson's Paradox, Lord's Paradox, and the suppression effect: covariate selection in the analysis of observational studies. Emerging Themes in Epidemiology, 5, 5.
  • Austin, P. (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research, 46, 399424.
  • Barron, D., Brawn, J. & Weatherhead, P. (2010) Meta-analysis of transmitter effects on avian behaviour and ecology. Methods in Ecology and Evolution, 1, 180187.
  • Carvalho, C., Polson, N. & Scott, J. (2010) The horseshoe estimator for sparse signals. Biometrika, 97, 465480.
  • Casper, R. (2009) Guidelines for the instrumentation of wild birds and mammals. Animal Behaviour, 78, 14771483.
  • Choquet, R., Lebreton, J., Gimenez, O., Reboulet, A. & Pradel, R. (2009) U-CARE: utilities for performing goodness-of-fit tests and manipulating CApture–REcapture data. Ecography, 32, 10711074.
  • Choudhury, S. (1995) Divorce in birds: a review of the hypotheses. Animal Behaviour, 50, 413429.
  • Dümbgen, L. & Riedwyl, H. (2007) On fences and asymmetry in box-and-whiskers plots. American Statistician, 61, 356359.
  • Gelman, A. & Hill, J. (2007) Data Analysis Using Regression and Multilevel-Hierarchical Models, 1st edn. Cambridge University Press, Cambridge, UK.
  • Gelman, A., Meng, X.L. & Stern, H. (1996) Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733807.
  • Gelman, A., Carlin, J., Stern, H. & Rubin, D. (2003) Bayesian Data Analysis, 2nd edn. Chapman & HallCRC, Boca Raton, Florida, USA.
  • Greenland, S. (2008) Invited commentary: variable selection versus shrinkage in the control of multiple confounders. American Journal of Epidemiology, 167, 523529.
  • Grémillet, D., Kuntz, G., Woakes, A.J., Gilbert, C., Robins, J., Le Maho, Y. & Butlin, P. (2005) Year-round recordings of behavioural and physiological parameters reveal the survival strategy of a poorly insulated diving endotherm during the arctic winter. Journal of Experimental Biology, 208, 42314241.
  • Hawkins, P. (2004) Bio-logging and animal welfare: practical refinements. Memoirs of the National Institute for Polar Research, 58, 5868.
  • Hazekamp, A., Mayer, R. & Osinga, N. (2010) Flow simulation along a seal: the impact of an external device. European Journal of Wildlife Management, 56, 131140.
  • Hebblewhite, M. & Haydon, D. (2010) Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philosophical Transactions of the Royal Society London series B, 365, 23032312.
  • Holland, P. & Rubin, D. (1983) Principals of Modern Psychological Measurement: A Festschrift for Frederic M. Lord, chapter On Lord's Paradox, pp. 326. Lawrence Erlbaum Associates Inc., Hillsdale, New Jersey.
  • Igual, J., Forero, M., Tavecchia, G., Gonzáles-Solis, J., Martìnez Abraìn, A., Hobson, K., Ruiz, A. & Oro, D. (2005) Short-term effects of data-loggers on Cory's Shearwater (Calonectris diomedea). Marine Biology, 146, 619624.
  • King, G. & Zeng, L. (2007) When can history be our guide? The pitfalls of counterfactual inference. International Studies Quarterly, 51, 183210.
  • Liu, C. (2004) Applied Bayesian Modeling and Causal Inference from Incomplete Data Perspectives, chapter 21 – Robit Regression: a Simple Robust Alternative to Logistic and Probit Regression, pp. 227238. John Wiley and Sons Ltds, New York.
  • Lord, F. (1967) A paradox in the interpretation of group comparisons. Psychological Bulletin, 68, 304305.
  • Louis, T. & Zeger, S. (2009) Effective communication of standard error and confidence interval. Biostatistics, 10, 12.
  • Lunn, W., Thomas, A., Best, N. & Spiegelhalter, D. (2000) WinBUGS – a Bayesian modelling framework: concept, structure, and extensibility. Statistics and Computing, 10, 325337.
  • McMahon, C., Field, I., Bradshaw, C., White, G. & Hindell, M. (2008) Tracking and data-logging devices attached to elephant seals do not affect individual mass gain or survival. Journal of Experimental Marine Biology and Ecology, 360, 7177.
  • Phillips, R., Xavier, J. & Croxall, J. (2003) Effects of satellite transmitters on albatrosses and petrels. Auk, 120, 10821090.
  • R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  • Ropert-Coudert, Y., Kato, A., Grémillet, D. & Crenner, F. (2012) Sensors for Ecology. Towards Integrated Knowledge of Ecosystems, chapter 1 – Biologging: Recording the Ecophysiology and Behaviour of Animals Moving Freely in their Environment, pp. 1742. ISBN:978-2-9541683-0-2. CNRS.
  • Rubin, D. (1978) Bayesian inference for causal effects: the role of randomization. The Annals of Statistics, 6, 3458.
  • Rubin, D. (2006) Matched Sampling for Causal Effects, 1st edn. Cambridge University Press, 32 avenue of the Americas, New York, NY 10013-2473, USA.
  • Rubin, D. (2007) The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Statistics in Medicine, 26, 2036.
  • Rubin, D. (2008) For objective causal inference, design trumps analysis. Annals of Applied Statistics, 2, 808840.
  • Rubin, D., Stuart, E. & Zanutto, E. (2004) A potential outcomes view of value-added assessment in education. Journal of Educational and Behavioral Statistics, 29, 103116.
  • Rutz, C. & Hays, G. (2009) New frontiers in biologging science. Biology Letters, 5, 289292.
  • Sagarin, R. & Pauchard, A. (2010) Observational approaches in ecology open new ground in a changing world. Frontiers in Ecology and the Environment, 8, 379386.
  • Seamen III, J., Seamen Jr, J. & Stamey, J. (2012) Hidden dangers of specifying noninformative priors. The American Statistician, 66, 7784.
  • Sekhon, J. (2009) Opiates for the matches: matching methods for causal inference. Annual Review of Political Science, 12, 487508.
  • Sekhon, J. (2011) Multivariate and propensity score matching software with automated balance optimization: the matching package for r. Journal of Statistical Software, 42, 152.
  • Swatschek, I., Ristow, D. & Wink, M. (1994) Mate fidelity and parentage in Cory's Shearwater Calonectris diomedea – field studies and DNA fingerprinting. Molecular Ecology, 3, 259262.
  • Thibault, J. (1994) Nest-Site tenacity and mate fidelity in relation to breeding success in Cory's Shearwater Calonectris diomedea. Bird Studies, 41, 2528.
  • Tversky, A. & Kahneman, D. (1971) Beliefs in the law of small numbers. Psychological Bulletin, 76, 105110.
  • Vandenabeele, S., Wilson, R. & Grogan, A. (2011) Tags on seabirds: how seriously are instrument-induced behaviours considered. Animal Welfare, 20, 559571.
  • Villard, P., Bonenfant, C. & Bretagnolle, V. (2011) Effects of satellite transmitters fitted to breeding Cory's Shearwaters. The Journal of Wildlife Management, 75, 709714.
  • Wilson, R. & McMahon, C. (2006) Measuring devices on wild animals: what constitutes acceptable practice? Frontiers in Ecology and the Environment, 4, 147154.
  • Wilson, R., Grant, W. & Duffy, D. (1986) Recording devices on free-ranging marine animals: does measurement affect foraging performance. Ecology, 67, 10911093.
  • Wilson, R., Grémillet, D., Syder, J., Kierspel, M., Garthe, S., Weimerskirch, H., Schäfer-Neth, C., Scolaro, J., Bost, C.A., Plötz, J. & Nel, D. (2002) Remote-sensing systems and seabirds: their use, abuse and potential for measuring marine environmental variables. Marine Ecology Progress Series, 228, 241261.
  • Winkler, R., Smith, J. & Fryback, D. (2002) The role of informative priors in zero-numerator problems: being conservative versus being candid. The American Statistician, 56, 14.