SEARCH

SEARCH BY CITATION

References

  • Aulchenko, Y.S., de Koning, D.J. & Haley, C. (2007) Genomewide rapid association using mixed model and regression: a fast and simple method for genome-wide pedigree-based quantitative trait loci association analysis. Genetics, 177, 577585.
  • Bauer, A.M., Hoti, F., Reetz, T.C., Schuh, W.-D., Leon, J. & Sillanpää, M.J. (2009) Bayesian prediction of breeding values by accounting for genotype-by-environment interaction in self-pollinating crops. Genetics Research, 91, 193207.
  • Brommer, J.E., Rattiste, K. & Wilson, A.J. (2008) Exploring plasticity in the wild: laying date temperature reaction norms in the common gull Larus canus. Proceedings of the Royal Society of London, Series B, 275, 687693.
  • Crossa, J., de los Campos, G., Perez, P., Gianola, D., Burgueno, J., Araus, J.L. et al. (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics, 186, 713724.
  • Daetwyler, H.D., Pong-Wong, R., Villanueva, B. & Woolliams, J.A. (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185, 10211031.
  • Frentiu, F.D., Clegg, S.M., Chittock, J., Burke, T., Blows, M.W. & Owens, I.P. (2008) Pedigree-free animal models: the relatedness matrix reloaded. Proceedings of the Royal Society of London, Series B, 275, 639647.
  • Garcia-Cortes, L.A. & Sorensen, D. (1996) On a multivariate implementation of the Gibbs sampler. Genetics Selection Evolution, 28, 121126.
  • Gasbarra, D., Pirinen, M., Sillanpää, M.J. & Arjas, E. (2009) Bayesian quantitative trait locus mapping based on reconstruction of recent genetic histories. Genetics, 183, 709721.
  • Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. (2004) Bayesian Data Analysis, 2nd edn. Chapman and Hall/CRC, New York.
  • Gianola, D. & van Kaam, J.B.C.H.M. (2008) Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics, 178, 22892303.
  • Gilks, W.R., Spiegelhalter, D.J. & Richardson, S. (1995) Markov Chain Monte Carlo in Practice. Chapman and Hall/CRC, London.
  • Golan, D. & Rosset, S. (2011) Accurate estimation of heritability in genome wide studies using random effects models. Bioinformatics, 27, 13171323.
  • Golub, G. & van Loan, C. (1996) Matrix Computations, 3rd edn. The Johns Hopkins University Press, London.
  • Hallander, J. & Waldmann, P. (2007) The effect of non-additive genetic interactions on selection in multi-locus genetic models. Heredity, 98, 349359.
  • Hallander, J., Waldmann, P., Wang, C. & Sillanpää, M.J. (2010) Bayesian inference of genetic parameters based on conditional decompositions of multivariate normal distributions. Genetics, 185, 645654.
  • Henderson, C.R. (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics, 31, 423447.
  • Henderson, C.R. (1984) Applications of Linear Models in Animal Breeding. University of Guelph Press, Guelph, Canada.
  • Hofer, A. & Ducrocq, V. (1997) Computing marginal posterior densities of genetic parameters of a multiple trait animal model using Laplace approximation or Gibbs sampling. Genetics Selection Evolution, 29, 427450.
  • Holand, A.M., Steinsland, I., Martino, S. & Jensen, H. (2013) Animal Models and Integrated Nested Laplace Approximations. G3 (Bethesda), 3, 12411251.
  • International HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature, 449, 851861.
  • Kang, H.M., Hoon-Sul, J., Service, S.K., Zaitlen, N.A., Kong, S.Y., Freimen, N.B., Sabatti, C. & Eskin, E. (2010) Variance component model to account for sample structure in genome-wide association studies. Nature Genetics, 42, 348354.
  • Kass, R.E. & Raftery, A.E. (1995) Bayes factors. Journal of the American Statistical Association, 90, 773795.
  • Kass, R.E., Carlin, B.P., Gelman, A., Neal, R. (1998) Markov chain Monte Carlo in practice: a roundtable discussion. The American Statistician, 52, 93100.
  • Kruuk, L.E.B. (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philosophical Transactions of the Royal Society of London, Series B, 359, 873890.
  • Kullback, S. & Leibler, R.A. (1951) On information and sufficiency. The Annals of Mathematical Statistics, 22, 7986.
  • Legarra, A. & Misztal, I. (2008) Computing strategies in genome-wide selection. Journal of Dairy Science, 91, 360366.
  • Lund, M.S., Sahana, G., de Koning, D.J., Su, G. & Carlborg, O. (2009) Comparison of analyses of the QTLMAS XII common dataset. I: Genomic selection. BMC Proceedings, 3, 1.
  • Lynch, M. & Walsh, B. (1998) Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland, MA.
  • Maenhout, S., DeBaets, B. & Haensert, G. (2009). Marker-based estimation of the coefficient of coancestry in hybrid breeding programmes. Theoretical and Applied Genetics, 118, 11811192.
  • Mathew, B., Bauer, A.M., Koistinen, P., Reetz, T.C., Leon, J. & Sillanpää, M.J. (2012) Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters. Heredity, 109, 235245.
  • Meuwissen, T.H.E. & Goddard, M.E. (2010) Accurate prediction of genetic values for complex traits by whole genome resequencing. Genetics, 185, 623631.
  • Meuwissen, T.H.E., Hayes, B.J. & Goddard, M.E. (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 18191829.
  • Meyer, K. (2007) WOMBAT A tool for mixed model analyses in quantitative genetics by REML. Journal of Zhejiang University Science B, 8, 815821.
  • O'Hagan, A. & Forster, J.J. (2004) Kendall's Advanced Theory of Statistics, Volume 2B: Bayesian Inference, 2nd edn. Arnold, London, UK.
  • Pemberton, J.M. (2008) Wild pedigrees: the way forward. Proceedings of the Royal Society of London, Series B, 275, 613621.
  • Piepho, H.P. (2009) Ridge regression and extensions for genomewide selection in maize. Crop Science, 49, 11651176.
  • Piepho, H.P., Ogutu, J.O., Schulz-Streeck, T., Estaghvirou, B., Gordillo, A. & Technow, F. (2012) Efficient computation of ridge-regression BLUP in genomic selection in plant breeding. Crop Science, 52, 10931104.
  • Plummer, M., Best, N., Cowles, K. & Vines, K. (2006) CODA: convergence diagnosis and output analysis for MCMC. R News, 6, 711.
  • Resende, M.F.R. Jr, Munoz, P., Resende, M.D.V., Garrick, D.J., Fernando, R.L., Davis, J.M. et al. (2012) Accuracy of genomic selection methods in a standard data set of Loblolly pine (Pinus taeda L.). Genetics, 190, 15031510.
  • Riester, M., Stadler, P.F. & Klemm, K. (2009) Reconstruction of wild multi-generation pedigrees. Bioinformatics, 25, 21342139.
  • Ritland, K. (2000) Marker-inferred relatedness as a tool for detecting heritability in nature. Molecular Ecology, 9, 11951204.
  • Roberts, G.O. & Tweedie, R.L. (1996) Exponential convergence of Langevin diffusions and their discrete approximations. Bernoulli, 2, 341363.
  • Santure, A.W., Stapley, J., Ball, A.D., Birkhead, T.R., Burke, T. & Slate, J. (2010) On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs. Molecular Ecology, 19, 14391451.
  • Searle, S.R., Casella, G. & McCulloch, C.E. (1992) Variance Components. John Wiley & Sons, New York.
  • Sillanpää, M.J. (2011) On statistical methods for estimating heritability in wild populations. Molecular Ecology, 20, 13241332.
  • Smith, B.J. (2007) boa: an R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software, 21, 137.
  • Sorensen, D. & Gianola, D. (2002) Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. Springer-Verlag, New York, NY.
  • Steinsland, I. & Jensen, H. (2010) Utilizing Gaussian Markov Random Field properties of Bayesian animal models. Biometrics, 66, 763771.
  • Strandén, I. & Christensen, O.F. (2011) Allele coding in genomic evaluation. Genetics Selection Evolution, 43, 25.
  • Thompson, R. (2008) Estimation of quantitative genetic parameters. Proceedings of the Royal Society of London, Series B, 275, 679686.
  • VanRaden, P.M. (2008) Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 44144423.
  • Visscher, P.M., Hill, W.G. & Wray, N.R. (2008) Heritability in the genomics era: concepts and misconceptions. Nature Reviews, Genetics, 9, 255266.
  • Waagepetersen, R., Ibánêz-Escriche, N. & Sorensen, D. (2008) A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics. Genetics Selection Evolution, 40, 161176.
  • Waldmann, P., Hallander, J., Hoti, F. & Sillanpää, M.J. (2008) Efficient Markov chain Monte Carlo implementation of Bayesian analysis of additive and dominance genetic variances in noninbred pedigrees. Genetics, 179, 11011112.
  • Wang, C.S., Rutledge, J.J. & Gianola, D. (1993) Marginal inference about variance components in a mixed linear model using Gibbs sampling. Genetics Selection Evolution, 21, 4162.
  • Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S. Henders, A.K. et al. (2010) Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42, 565569.
  • Yu, J., Pressoir, G., Briggs, W.H., Vroh Bi, I., Yamasaki, M. et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 38, 203208.