SEARCH

SEARCH BY CITATION

References

  • Algar, A.C., Kharouba, H.M., Young, E.R. & Kerr, J.T. (2009) Predicting the future of species diversity, macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 32, 2233.
  • Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 4247.
  • Benitez, J.M., Castro, J.L. & Requena, I. (1997) Are artificial neural networks black boxes? IEE Transactions on Neural Networks, 8, 11561164.
  • Bisrat, S.A., White, M.A., Beard, K.H. & Richard Cutler, D. (2012) Predicting the distribution potential of an invasive frog using remotely sensed data in Hawaii. Diversity and Distributions, 18, 648660.
  • Breiman, L. (2001) Random forests. Machine Learning, 45, 532.
  • Cayuela, L., Golicher, D.J., Newton, A.C., Kolb, M., de Alburquerque, F.S., Arets, E.J.M.M., Alkemade, J.R.M. & Pérez, A.M. (2009) Species distribution modeling in the tropics, problems, potentialities, and the role of biological data for effective species conservation. Tropical Conservation Science, 2, 319352.
  • Cayuela, L., Gálvez-Bravo, L., Pérez Pérez, R., Albuquerque, F.S., Golicher, D.J., Zahawi, R.A., Ramírez-Marcial, N., Garibaldi, C., Field, R., Rey Benayas, J.M., González-Espinosa, M., Balvanera, P., Castillo, M.A., Figueroa-Rangel, B.L., Griffith, D.M., Islebe, G.A., Kelly, D.A., Olvera-Vargas, M., Schnitzer, S.A., Velázquez, E., Williams-Linera, G., Brewer, S.W., Camacho-Cruz, A., Coronado, I., de Jong, B., del Castillo, R., de la Cerda, I., Fernández, J., Fonseca, W.G., Galindo-Jaimes, L., Gillespie, T.W., González-Rivas, B., Gordon, J.E., Hurtado, J., Linares, J., Letcher, S.G., Mangan, S.C., Meave, J.A., Méndez, E.V., Meza, V., Ochoa-Gaona, S., Peterson, C.J., Ruiz-Gutierrez, V., Snarr, K.A., Tun Dzul, F., Viergever, K.M., White, D.A., Williams, J.N., Bonet, F.J. & Zamora, R. (2012) The tree biodiversity network (BIOTREE-NET), prospects for biodiversity research and conservation in the tropics. Biodiversity and Ecology, 4, 211224.
  • Chacon, C. (2005) Fostering conservation of key priority sites and rural development in Central America: the role of private protected areas. Parks, 15, 3947.
  • Conservation International. 2011. Biodiversity Hotspots - Mesoamerica. URL: http://www.biodiversityhotspots.org/xp/hotspots/mesoamerica/pages/default.aspx#indepth.
  • Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J. & Lawler, J.J. (2007) Random forests for classification in ecology. Ecology, 88, 27832792.
  • Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.P. & Guisan, A. (2011) Predicting spatial patterns of plant species richness, A comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions, 17, 11221131.
  • Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, RJ., Huettman, F., Leathwick, JR., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, M.C.J., Peterson, A.T., Phillips, S.J., Richardson, K., Pereira, R.S., Schapire, R.E., Soberón, J., Williams, S.E., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129151.
  • Feeley, K.J. & Silman, M.R. (2011) The data void in modeling current and future distributions of tropical species. Global Change Biology, 17, 626630.
  • Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393404.
  • Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence. Environmental Conservation, 24, 3849.
  • Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 4858.
  • Gahegan, M. (2003) Is inductive machine learning just another wild goose (or might it lay the golden egg)? International Journal of Geographical Information Science, 17, 6992.
  • Gioia, P. & Pigott, P.J. (2000) Biodiversity assessment: a case study in predicting richness from the potential distributions of plant species in the forests of south-western Australia. Journal of Biogeography, 27, 10651078.
  • Gleason, H.A. (1926) The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53, 726.
  • Golicher, D.J., Cayuela, L. & Newton, A.C. (2012b) Effects of Climate Change on the Potential Species Richness of Mesoamerican Forests. Biotropica, 44, 284293.
  • Golicher, D.J, Cayuela, L., Ford, A. & Newton, A.C. (2012a) Pseudo-absences, pseudo-models and pseudo-niches, pitfalls of model selection based on the Area Under the Curve. International Journal of Geographical Information Science, 26, 20492063.
  • GRASS Development Team (2011) Geographic Resources Analysis Support System (GRASS) Software, Version 6.4.1. Open Source Geospatial Foundation. http://grass.osgeo.org.
  • Guisan, A. & Rahbeck, C. (2011) SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38, 14331444.
  • Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147186.
  • Hastie, T. (2011). gam: Generalized Additive Models. R package version 1.06.2, http://CRAN.R-project.org/package=gam.
  • Heikkinen, R.K., Marmion, M. & Luoto, M. (2012), Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography, 35, 276288.
  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 19651978.
  • Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2012) dismo: Species distribution modeling. R package version 0.6-10, http://CRAN.R-project.org/package=dismo.
  • Hollander, M. & Wolfe, D.A. (1973) Nonparametric Statistical Methods. John Wiley & Sons, New York.
  • Jiménez-Valverde, A. & Lobo, J.M. (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica, 31, 361369.
  • Karatzoglou, A., Smola, A., Hornik, K. & Zeileis, A. (2004) kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11, 120.
  • Koleff, P., Gaston, K.J. & Lennon, J.J. (2003) Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367382.
  • La Sorte, F.A. & Hawkins, B.A. (2007) Range maps and species richness patterns: errors of commission and estimates of uncertainty. Ecography, 30, 649662.
  • Lehmann, A., Leathwick, J.R. & Overton, J.M. (2002) Assessing New Zealand fern diversity from spatial predictions of species assemblages. Biodiversity and Conservation, 11, 22172238.
  • Lennon, J.J., Koleff, P., Greenwood, J.J.D. & Gaston, K.J. (2001) The geographical structure of British bird distributions, Diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966979.
  • Liaw, A. & Wiener, M. (2002) Classification and Regression by randomForest. R News, 2, 1822.
  • Liu, C., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385393.
  • Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC, A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145151.
  • Lorenzen, E.D., Nogués-Bravo, D., Orlando, L., Weinstock, J., Binladen, J., Marske, K.A., Ugan, A., Borregaard, M.K., Gilbert, M.T.P., Nielsen, R., Ho, S.Y.W., Goebel, T., Graf, K.E., Byers, D., Stenderup, J.T., Rasmussen, M., Campos, P.F., Leonard, J.A., Koepfli, K.-P., Froese, D., Zazula, G., Stafford Jr, T.W., Aaris-Sørensen, K., Batra, P., Haywood, A.M., Singarayer, J.S., Valdes, P.J., Boeskorov, G., Burns, J.A., Davydov, S.P., Haile, J., Jenkins, D.L., Kosintsev, P., Kuznetsova, T., Lai, X., Martin, L.D., McDonald, H.G., Mol, D., Meldgaard, M., Munch, K., Stephan, E., Sablin, M., Sommer, R.S., Sipko, T., Scott, E., Suchard, M.A., Tikhonov, A., Willerslev, R., Wayne, R.K., Cooper, A., Hofreiter, M., Sher, A., Shapiro, B., Rahbek, C. & Willerslev, E. (2011) Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 479, 359364.
  • Manel, S., Dias, J.M. & Ormerod, S.J. (1999b) Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions, A case study with a Himalayan river bird. Ecological Modelling, 120, 337347.
  • Manel, S., Dias, J.M., Buckton, S.T. & Ormerod, S.J. (1999a) Alternative methods for predicting species distribution, An illustration with Himalayan river birds. Journal of Applied Ecology, 36, 734747.
  • Mateo, R.G., Felicísimo, A.M., Pottier, J., Guisan, A. & Muñoz, J. (2012) Do stacked species distribution models reflect altitudinal diversity patterns? PLoS ONE, 7, e32586.
  • Milborrow, S. (2012) Earth, Multivariate Adaptive Regression Spline Models. R package version 3.2-2, http://CRAN.R-project.org/package=earth.
  • Muñoz, M.E.S., Giovanni, R., Siqueira, M.F., Sutton, T., Brewer, P., Pereira, R.S., Canhos, D.A.L. & Canhos, V.P. (2009) openModeller: a generic approach to species' potential distribution modelling. GeoInformatica, 15, 111135.
  • Newbold, T., Gilbert, F., Zalat, S., El-Gabbas, A. & Reader, T. (2009) Climate-based models of spatial patterns of species richness in Egypt's butterfly and mammal fauna. Journal of Biogeography, 36, 20852095.
  • Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. & Wagner, H. (2011) Vegan, Community Ecology Package. R package version 1.17-10, http://CRAN.R-project.org/package=vegan.
  • Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231259.
  • Pineda, E. & Lobo, J.M. (2009) Assessing the accuracy of species distribution models to predict amphibian species richness patterns. Journal of Animal Ecology, 78, 182190.
  • Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Rossier, L., Randin, C.F., Vittoz, P. & Guisan, A. (2012) The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 22, 5263.
  • R Development Core Team (2012). R, A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL www.R-project.org/.
  • Richardson, D.M., Iponga, D.M., Roura-Pascual, N., Krug, R.M., Milton, S.J., Hughes, G.O. & Thuiller, W. (2010) Accommodating scenarios of climate change and management in modelling the distribution of the invasive tree Schinus molle in South Africa. Ecography, 33, 10491061.
  • Sanderson, E.W., Jaiteh, M., Levy, M.A., Redford, K.H., Wannebo, A.V. & Woolmer, G. (2002) The human footprint and the last of the wild. BioScience, 52, 891904.
  • Simpson, G.G. (1943) Mammals and the nature of continents. American Journal of Science, 241, 131.
  • Skov, F. & Svenning, J.C. (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography, 27, 366380.
  • Tucker, C.J., Pinzon, J.E. & Brown, M.E. (2004) Global Inventory Modeling and Mapping Studies, Global Land Cover Facility, University of Maryland, College Park, Maryland.
  • USGS (2004) Shuttle Radar Topography Mission, Global Land Cover Facility, University of Maryland, College Park, Maryland.
  • Venables, W.N. & Ripley, B.D. (2002) Modern Applied Statistics with S. 4th edn. Springer, New York.
  • Warnes, G.R. (2012). gplots: Various R programming tools for plotting data. R package version 2.11.0, http://CRAN.R-project.org/package=gplots.
  • Williams, J.N., Seo, C., Thorne, J., Nelson, J.K., Erwin, S., O'Brien, J.M. & Schwartz, M.W. (2009) Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions, 15, 565576.
  • Williams, K.J., Belbin, L., Austin, M.P., Stein, J.L. & Ferrier, S. (2012) Which environmental variables should I use in my biodiversity model? International Journal of Geographical Information Science, 26, 20092047.
  • Yesson, C., Brewer, P.W., Sutton, T., Caithness, N., Pahwa, J.S., Burgess, M., Gray, W.A., White, R.J., Jones, A.C., Bisby, F.A. & Culham, A. (2007) How Global Is the Global Biodiversity Information Facility? PLoS ONE, 2, e1124.