SEARCH

SEARCH BY CITATION

References

  • Abbas K, Breton J & Drapier JC (2008) The interplay between nitric oxide and peroxiredoxins. Immunobiology 213: 815822.
  • Álvarez-Domínguez C, Carrasco-Marín E, López-Mato P & Leyva-Cobián F (2000) The contribution of both oxygen and nitrogen intermediates to the intracellular killing mechanisms of C1q-opsonized Listeria monocytogenes by the macrophage-like IC-21 cell line. Immunology 101: 8389.
  • Beckerman KP, Rogers HW, Corbett JA, Schreiber RD, McDaniel ML & Unanue ER (1993) Release of nitric oxide during the T cell-independent pathway of macrophage activation. Its role in resistance to Listeria monocytogenes. J Immunol 150: 888895.
  • Bogdan C, Röllinghoff M & Diefenbach A (2000) The role of nitric oxide in innate immunity. Immunol Rev 173: 1726.
  • Boockvar KS, Granger DL, Poston RM, Maybodi M, Washington MK, Hibbs JB Jr & Kurlander RL (1994) Nitric oxide produced during murine listeriosis is protective. Infect Immun 62: 10891100.
  • Bryk R, Griffin P & Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407: 211215.
  • Chae HZ, Chung SJ & Rhee SG (1994a) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269: 2767027678.
  • Chae HZ, Uhm TB & Rhee SG (1994b) Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. P Natl Acad Sci USA 91: 70227026.
  • Chakraborty T, Leimeister-Wächter M, Domann E, Hartl M, Goebel W, Nichterlein T & Notermans S (1992) Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174: 568574.
  • Charoenlap N, Shen Z, McBee ME, Muthupalani S, Wogan GN, Fox JG & Schauer DB (2012) Alkyl hydroperoxide reductase is required for Helicobacter cinaedi intestinal colonization and survival under oxidative stress in BALB/c and BALB/c interleukin-10−/− mice. Infect Immun 80: 921928.
  • Chen L, Xie QW & Nathan C (1998) Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell 1: 795805.
  • Decker T, Stockinger S, Karaghiosoff M, Müller M & Kovarik P (2002) IFNs and STATs in innate immunity to microorganisms. J Clin Invest 109: 12711277.
  • Glaser P, Frangeul L, Buchrieser C et al. (2001) Comparative genomics of Listeria species. Science 294: 849852.
  • Hirotsu S, Abe Y, Okada K, Nagahara N, Hori H, Nishino T & Hakoshima T (1999) Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. P Natl Acad Sci USA 96: 1233312338.
  • Horton RM, Cai ZL, Ho SN & Pease LR (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8: 528535.
  • Jin Y, Dons L, Kristensson K & Rottenberg ME (2001) Neural route of cerebral Listeria monocytogenes murine infection: role of immune response mechanisms in controlling bacterial neuroinvasion. Infect Immun 69: 10931100.
  • Jin Y, Lundkvist G, Dons L, Kristensson K & Rottenberg ME (2004) Interferon-gamma mediates neuronal killing of intracellular bacteria. Scand J Immunol 60: 437448.
  • Kim KP, Hahm BK & Bhunia AK (2007) The 2-cys peroxiredoxin-deficient Listeria monocytogenes displays impaired growth and survival in the presence of hydrogen peroxide in vitro but not in mouse organs. Curr Microbiol 54: 382387.
  • Lingnau A, Domann E, Hudel M, Bock M, Nichterlein T, Wehland J & Chakraborty T (1995) Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and -independent mechanisms. Infect Immun 63: 38963903.
  • Lomonosova EE, Kirsch M, Rauen U & de Groot H (1998) The critical role of Hepes in SIN-1 cytotoxicity, peroxynitrite versus hydrogen peroxide. Free Radic Biol Med 24: 522528.
  • MacMicking JD, Nathan C, Hom G et al. (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81: 641650.
  • Müller M, Althaus R, Fröhlich D, Frei K & Eugster HP (1999) Reduced antilisterial activity of TNF-deficient bone marrow-derived macrophages is due to impaired superoxide production. Eur J Immunol 29: 30893097.
  • Nathan C (1997) Inducible nitric oxide synthase: what difference does it make? J Clin Invest 100: 24172423.
  • Ohya S, Tanabe Y, Makino M, Nomura T, Xiong H, Arakawa M & Mitsuyama M (1998) The contributions of reactive oxygen intermediates and reactive nitrogen intermediates to listericidal mechanisms differ in macrophages activated pre- and postinfection. Infect Immun 66: 40434049.
  • Pizarro-Cerdá J & Cossart P (2009) Listeria monocytogenes membrane trafficking and lifestyle: the exception or the rule? Annu Rev Cell Dev Biol 25: 649670.
  • Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M & Nathan C (1999) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10: 2938.
  • Tripp CS, Wolf SF & Unanue ER (1993) Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. P Natl Acad Sci USA 90: 37253729.
  • Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, González-Zorn B, Wehland J & Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14: 584640.
  • Wong CM, Zhou Y, Ng RW, Kung Hf HF & Jin DY (2002) Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J Biol Chem 277: 53855394.