• Brassica napus;
  • clubroot;
  • cortical infection;
  • hypersensitive response;
  • lignin;
  • root hair infection;
  • ROS;
  • SEM;
  • TEM


The timing and expression of resistance to four isolates of Plasmodiophora brassicae, collected from research sites where pathotypes 2, 3, 5 and 6 (Williams' system) had been dominant when characterised in 2006, were assessed in four new commercial cultivars of canola (Brassica napus) with resistance to clubroot. Each of the resistant cultivars was highly resistant to all four of the isolates, and there was no difference in their response to infection. Root hair infection occurred at high levels, but pathogen development occurred more slowly than in a susceptible cultivar (control). Secondary infection and development in cortical cells was severely inhibited in each of the resistant cultivars; only a few bi-nucleated plasmodia were observed at 12 days after inoculation (DAI), and plasmodia were rarely observed at 18 and 24 DAI. In contrast, development in the susceptible cultivar had progressed to resting spores by 24 DAI. A dense ring of accumulated reactive oxygen species (ROS) was observed in the endodermis, pericycle and vascular cambium of non-inoculated controls and inoculated plants of the resistant cultivars. However, the ROS ring disappeared rapidly in infected plants of the susceptible cultivar. Plasmodia invaded the stele of susceptible roots by preferentially colonising the xylem parenchyma cells. Expansion and enlargement of lignified xylem cells was observed by 35 DAI. The absence of any specific points of ROS accumulation or lignification of epidermal or cortical cells in the resistant cultivars indicates that a hypersensitive response is not the main mechanism of resistance in these lines. The uniform response of these resistant cultivars to the four isolates of P. brassicae indicates that the resistance in each cultivar may be conditioned by a gene(s) from a single source that confers broad resistance, because most sources of resistance to P. brassicae are pathotype specific.