• Dose–response model;
  • heat tolerance;
  • seed devitalisation;
  • seed germination;
  • soil steaming;
  • thermal weed control


Thermal soil disinfestation techniques are effective reducers of weed seedbank and weed emergence. Two experiments (Expt 1 and Expt 2) were conducted to test the effect of brief exposure to varying temperatures on the seed germination of Amaranthus retroflexus, Echinochloa crus-galli, Galinsoga quadriradiata, Portulaca oleracea, Setaria viridis and Solanum nigrum. To this end, species seeds were moistened with loamy-sand soil and placed into test tubes. The tubes were heated rapidly and then cooled by dipping them into a hot water bath until target temperatures were achieved. Expt 1 temperatures ranged between 55°C and 85°C at 5°C intervals and Expt 2 ranged between 48°C and 86°C at 2°C intervals. Thereafter, the tubes were dipped into a cooling (1°C) water bath. Exposure to target temperatures ranged between 2 s and 5 s. Soil temperatures were monitored using embedded thermocouples. A log-logistic dose–response model described the effect of heating on seed germinability; temperatures required for 99% reductions were calculated. On the basis of the predictive model equation used, weed species' germination sensitivity to high temperature exposure can be ranked as follows: E. crus-galli (79.6°C), S. viridis (75.8°C), S. nigrum (74.6°C), P. oleracea (72.2°C), A. retroflexus (70.9°C) and G. quadriradiata (68.1°C). The interval between no effects to complete seed devitalisation occurred at temperatures varying from 6.5°C to 15.7°C. Seed size and weight varied directly with heat tolerance. Study results not only inform the timing and optimal adjustment for effective thermal soil treatment, but also demonstrate a relatively simple and generalizable methodology for use in other studies.