Mycoviruses of Botrytis cinerea isolates from different hosts

Authors

  • C. Rodríguez-García,

    1. Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
    Search for more papers by this author
  • V. Medina,

    1. Dept. Producció Vegetal i Ciència Forestal, Universitat de Lleida, Lleida, Spain
    Search for more papers by this author
  • A. Alonso,

    1. Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
    Search for more papers by this author
  • M.A. Ayllón

    Corresponding author
    1. Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
    • Correspondence

      M.A. Ayllón, Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón 28223, Madrid, Spain. Email: mariaangeles.ayllon@upm.es

    Search for more papers by this author

Abstract

Botrytis cinerea (teleomorph Botryotinia fuckeliana) is a necrotrophic plant pathogenic fungus that causes grey mould and enormous economic losses worldwide in different crops. Control of B. cinerea is difficult due to the appearance of fungicide-resistant isolates, and the diversity in virulence due to genetic variability and, perhaps, the infection with mycoviruses or fungal viruses. The discovery of mycoviruses and their possible application as biocontrol agents, as well as their use as tools to study the plant–pathogen interaction, has encouraged their study in B. cinerea. Herein, we have analysed the occurrence of mycoviruses in Spanish B. cinerea isolates to approach a better understanding of the interactions among viruses, fungi and plants in this pathosystem. Fifty-five percent of the B. cinerea isolates analysed contained double-stranded RNA (dsRNA) elements, and the number of dsRNA elements, their relative concentration and size were variable among isolates. Some of these dsRNAs were related to the presence of virus like rod or isometric particles, and to cellular degeneration and malformed mitochondria. We have also demonstrated that a 3 kb dsRNA present in 55% of the isolates having dsRNA elements was a mycovirus genome. Partial sequence of that mycovirus presented high identity in nucleotide and amino acid sequence with Botrytis cinerea mitovirus 1 (BcMV1). Analysis of the genetic distance within Spanish BcMV1 sequences showed the existence of different isolates of this mitovirus inside the Spanish B. cinerea population analysed. This is the first report of the variability of dsRNA elements and the partial genome sequence of a mitovirus associated with Spanish B. cinerea isolates and the genetic diversity within Spanish isolates of BcMV1.

Ancillary