• caloric restriction;
  • Gompertz;
  • Gompertz–Makeham;
  • mice;
  • rats;
  • senescence


Dietary restriction (DR) extends lifespan in multiple species from various taxa. This effect can arise via two distinct but not mutually exclusive ways: a change in aging rate and/or vulnerability to the aging process (i.e. initial mortality rate). When DR affects vulnerability, this lowers mortality instantly, whereas a change in aging rate will gradually lower mortality risk over time. Unraveling how DR extends lifespan is of interest because it may guide toward understanding the mechanism(s) mediating lifespan extension and also has practical implications for the application of DR. We reanalyzed published survival data from 82 pairs of survival curves from DR experiments in rats and mice by fitting Gompertz and also Gompertz–Makeham models. The addition of the Makeham parameter has been reported to improve the estimation of Gompertz parameters. Both models separate initial mortality rate (vulnerability) from an age-dependent increase in mortality (aging rate). We subjected the obtained Gompertz parameters to a meta-analysis. We find that DR reduced aging rate without affecting vulnerability. The latter contrasts with the conclusion of a recent analysis of a largely overlapping data set, and we show how the earlier finding is due to a statistical artifact. Our analysis indicates that the biology underlying the life-extending effect of DR in rodents likely involves attenuated accumulation of damage, which contrasts with the acute effect of DR on mortality reported for Drosophila. Moreover, our findings show that the often-reported correlation between aging rate and vulnerability does not constrain changing aging rate without affecting vulnerability simultaneously.