SEARCH

SEARCH BY CITATION

References

  • Amara C, Shankland E, Jubrias S, Marcinek D, Kushmerick M, Conley K (2007) Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc. Natl Acad. Sci. USA 104, 10571062.
  • Anderson E, Lustig M, Boyle K, Woodlief T, Kane D, Lin C, Price JI, Kang L, Rabinovitch P, Szeto H, Houmard J, Cortright R, Wasserman D, Neufer P (2009) Mitochondrial h2o2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest. 119, 573581.
  • Applegate MAB, Humphries KM, Szweda LI (2007) Reversible inhibition of α-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid†. Biochemistry 47, 473478.
  • Applegate MA, Humphries KM, Szweda LI (2008) Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 47, 473478.
  • Arakaki L, Burns D, Kushmerick M (2007) Accurate myoglobin oxygen saturation by optical spectroscopy measured in blood-perfused rat muscle. Appl. Spectrosc. 61, 978985.
  • Baker DJ, Krause DJ, Howlett RA, Hepple RT (2006) Nitric oxide synthase inhibition reduces o2 cost of force development and spares high-energy phosphates following contractions in pump-perfused rat hindlimb muscles. Exp. Physiol. 91, 581589.
  • Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, Seshan SV, Pardee JD, Szeto HH (in press) Cardiolipin as a novel target to re-energize ischemic mitochondria. J. Am. Soc. Nephrol.
  • Blei ML, Conley KE, Kushmerick MJ (1993) Separate measures of ATP utilization and recovery in human skeletal muscle. J. Physiol. 465, 203222.
  • Dai D-F, Chen T, Szeto H, Nieves-Cintrón M, Kutyavin V, Santana LF, Rabinovitch PS (2011) Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J. Am. Coll. Cardiol. 58, 7382.
  • Davis JM, Murphy EA, Carmichael MD, Davis B (2009) Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1071R1077.
  • Garcia J, Han D, Sancheti H, Yap LP, Kaplowitz N, Cadenas E (2010) Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J. Biol. Chem. 285, 3964639654.
  • Golding EM, Teague WE Jr, Dobson GP (1995) Adjustment of k' to varying pH and pMg for the creatine kinase, adenylate kinase and ATP hydrolysis equilibria permitting quantitative bioenergetic assessment. J. Exp. Biol. 198, 17751782.
  • Heineman FW, Eng J, Berkowitz BA, Balaban RS (1990) Nmr spectral analysis of kinetic data using natural lineshapes. Magn. Reson. Med. 13, 490497.
  • Hood DA (2001) Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J. Appl. Physiol. 90, 11371157.
  • Hurd TR, Requejo R, Filipovska A, Brown S, Prime TA, Robinson AJ, Fearnley IM, Murphy MP (2008) Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on cys-531 and cys-704 of the 75-kda subunit. J. Biol. Chem. 283, 2480124815.
  • Jang YC, Pérez VI, Song W, Lustgarten MS, Salmon AB, Mele J, Qi W, Liu Y, Liang H, Chaudhuri A, Ikeno Y, Epstein CJ, Van Remmen H, Richardson A (2009) Overexpression of Mn superoxide dismutase does not increase life span in mice. J. Gerontol. A Biol. Sci. Med. Sci. 64A, 11141125.
  • Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the united states. J. Am. Geriatr. Soc. 52, 8085.
  • Kushmerick M (1997) Multiple equilibria of cations with metabolites in muscle bioenergetics. Am. J. Physiol. Cell Physiol. 272, C1739C1747.
  • Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E (2011) Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 12, 149159.
  • Li D, Lai Y, Yue Y, Rabinovitch PS, Hakim C, Duan D (2009) Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice. PLoS ONE 4, e6673.
  • Mailloux RJ, Seifert EL, Bouillaud F, Aguer C, Collins S, Harper M-E (2011) Glutathionylation acts as a control switch for uncoupling proteins ucp2 and ucp3. J. Biol. Chem. 286, 2186521875.
  • Mansouri A, Muller FL, Liu Y, Ng R, Faulkner J, Hamilton M, Richardson A, Huang TT, Epstein CJ, Van Remmen H (2006) Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech. Ageing Dev. 127, 298306.
  • Marcinek DJ, Schenkman KA, Ciesielski WA, Conley KE (2004) Mitochondrial coupling in vivo in mouse skeletal muscle. Am. J. Cell Physiol. 286, C457C463.
  • Marcinek D, Schenkman K, Ciesielski W, Lee D, Conley K (2005) Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle. J. Physiol. 569, 467473.
  • Matuszczak Y, Farid M, Jones J, Lansdowne S, Smith MA, Taylor AA, Reid MB (2005) Effects of N-acetylcysteine on glutathione oxidation and fatigue during handgrip exercise. Muscle Nerve 32, 633638.
  • McLain AL, Szweda PA, Szweda LI (2011) Α-ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic. Res. 45, 2936.
  • McManus MJ, Murphy MP, Franklin JL (2011) The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease. J. Neurosci. 31, 1570315715.
  • Min K, Smuder AJ, Kwon O-S, Kavazis AN, Szeto HH, Powers SK (2011) Mitochondrial-targeted antioxidants protect the skeletal muscle against immobilization-induced muscle atrophy. J. Appl. Physiol. 111, 14591466.
  • Nicholls DG, Ferguson SJ (2002) Bioenergetics 3. London: Academic Press.
  • Nogueira L, Ramirez-Sanchez I, Perkins GA, Murphy A, Taub PR, Ceballos G, Villarreal FJ, Hogan MC, Malek MH (2011) (-)-epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. J. Physiol. 589, 46154631.
  • Percival JM, Anderson KNE, Gregorevic P, Chamberlain JS, Froehner SC (2008) Functional deficits in nNOSμ-deficient skeletal muscle: myopathy in nNOS knockout mice. PLoS ONE 3, e3387.
  • Picard M, Ritchie D, Wright KJ, Romestaing C, Thomas MM, Rowan SL, Taivassalo T, Hepple RT (2010) Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 9, 10321046.
  • Rasmussen UF, Krustrup P, Kjær M, Rasmussen HN (2003) Experimental evidence against the mitochondrial theory of aging a study of isolated human skeletal muscle mitochondria. Exp. Gerontol. 38, 877886.
  • Reid MB (2008) Free radicals and muscle fatigue: of ROS, canaries, and the IOC. Free Radic. Biol. Med. 44, 169179.
  • Reid MB, Stokic DS, Koch SM, Khawli FA, Leis AA (1994) N-acetylcysteine inhibits muscle fatigue in humans. J. Clin. Invest. 94, 24682474.
  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 19091911.
  • Siegel MP, Kruse SE, Knowels G, Salmon A, Beyer R, Xie H, Van Remmen H, Smith SR, Marcinek DJ (2011) Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice. PLoS ONE 6, e26963.
  • Siegel MP, Wilbur T, Mathis M, Shankland EG, Trieu A, Harper ME, Marcinek DJ (2012) Impaired adaptability of in vivo mitochondrial energetics to acute oxidative insult in aged skeletal muscle. Mech. Ageing Dev. 133, 620628.
  • Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB (2009) An attempt to prevent senescence: a mitochondrial approach. Biochimica et Biophysica Acta (BBA) -. Bioenergetics 1787, 437461.
  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic. Biol. Med. 52, 539555.
  • St-Pierre J, Buckingham J, Roebuck S, Brand M (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277, 4478444790.
  • Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng F-Y, Zhao Z, Ganger M, Tow CY, Seshan SV (2011) Mitochodria-targeted peptide accelerates atp recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol. 22, 10411052.
  • White CC, Krejsa CJ, Eaton DL, Kavanagh TJ (1999). Hplc-based assays for enzymes of glutathione biosynthesis. In MainesM, CostaLG, HodgsonE, ReedDJ, SipesIG, editors. Current Protocols in Toxicology. Hoboken, NJ: John Wiley & Sons.
  • Williams AD, Carey MF, Selig S, Hayes A, Krum H, Patterson J, Toia D, Hare DL (2007) Circuit resistance training in chronic heart failure improves skeletal muscle mitochondrial atp production rate—a randomized controlled trial. J. Cardiac Fail. 13, 7985.
  • Yang L, Zhao K, Calingasan NY, Luo G, Szeto HH, Beal MF (2009) Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Antioxid. Redox Signal. 11, 20952104.