• brain aging;
  • c-Jun N-terminal kinase signaling;
  • FDG-PET;
  • insulin signaling;
  • lipoic acid;
  • mitochondria;
  • mitochondrial biogenesis;
  • mitochondrial bioenergetics;
  • PGC1α;
  • Sirt1


This study examines the progress of a hypometabolic state inherent in brain aging with an animal model consisting of Fischer 344 rats of young, middle, and old ages. Dynamic microPET scanning demonstrated a significant decline in brain glucose uptake at old ages, which was associated with a decrease in the expression of insulin-sensitive neuronal glucose transporters GLUT3/4 and of microvascular endothelium GLUT1. Brain aging was associated with an imbalance between the PI3K/Akt pathway of insulin signaling and c-Jun N-terminal kinase (JNK) signaling and a downregulation of the PGC1α-mediated transcriptional pathway of mitochondrial biogenesis that impinged on multiple aspects of energy homeostasis. R-(+)-lipoic acid treatment increased glucose uptake, restored the balance of Akt/JNK signaling, and enhanced mitochondrial bioenergetics and the PGC1α-driven mitochondrial biogenesis. It may be surmised that impairment of a mitochondria–cytosol–nucleus communication is underlying the progression of the age-related hypometabolic state in brain; the effects of lipoic acid are not organelle-limited, but reside on the functional and effective coordination of this communication that results in improved energy metabolism.