• Hypoxia;
  • ischemia/reperfusion injury;
  • ischemia;
  • ischemic preconditioning;
  • transplantation

Ischemia-reperfusion injury (IRI) induces hypoxia-inducible factor-1 (HIF-1) in the myocardium, but the consequences remain elusive. We investigated HIF-1 activation during cold and warm ischemia and IRI in rat hearts and cardiac syngrafts. We also tested the effect of HIF-α stabilizing prolyl hydroxylase inhibitor (FG-4497) on IRI or allograft survival. Ex vivo ischemia of the heart increased HIF-1α expression in a time- and temperature-dependent fashion. Immunohistochemistry localized HIF-1α to all cardiac cell types. After reperfusion, HIF-1α immunoreactivity persisted in smooth muscle cells and cardiomyocytes in the areas with IRI. This was accompanied with a transient induction of protective HIF-1 downstream genes. Donor FG-4497 pretreatment for 4 h enhanced IRI in cardiac allografts as evidenced by an increase in cardiac troponin T release, cardiomyocyte apoptosis, and activation of innate immunity. Recipient FG-4497 pretreatment for 4 h decreased infiltration of ED1+ macrophages, and mildly improved the long-term allograft survival. In syngrafts donor FG-4497 pretreatment increased activation of innate immunity, but did not induce myocardial damage. We conclude that the HIF-1 pathway is activated in heart transplants. We suggest that pharmacological HIF-α preconditioning of cardiac allografts donors would not lead to clinical benefit, while in recipients it may result in antiinflammatory effects and prolonged allograft survival.