Induction of Cardiac Allograft Tolerance Across a Full MHC Barrier in Miniature Swine by Donor Kidney Cotransplantation



We have previously shown that tolerance of kidney allografts across a full major histocompatibility complex (MHC) barrier can be induced in miniature swine by a 12-day course of high-dose tacrolimus. However, that treatment did not prolong survival of heart allografts across the same barrier. We have now tested the effect of cotransplanting an allogeneic heart and kidney from the same MHC-mismatched donor using the same treatment regimen. Heart allografts (n = 3) or heart plus kidney allografts (n = 5) were transplanted into MHC-mismatched recipients treated with high-dose tacrolimus for 12 days. As expected, all isolated heart allografts rejected by postoperative day 40. In contrast, heart and kidney allografts survived for >200 days with no evidence of rejection on serial cardiac biopsies. Heart/kidney recipients lost donor-specific responsiveness in cell-mediated lympholysis and mixed-lymphocyte reaction assays, were free of alloantibody and exhibited prolonged survival of donor, but not third-party skin grafts. Late (>100 days) removal of the kidney allografts did not cause acute rejection of the heart allografts (n = 2) and did not abrogate donor-specific unresponsiveness in vitro. While kidney-induced cardiac allograft tolerance (KICAT) has previously been demonstrated across a Class I disparity, these data demonstrate that this phenomenon can also be observed across the more clinically relevant full MHC mismatch. Elucidating the renal element(s) responsible for KICAT could provide mechanistic information relevant to the induction of tolerance in recipients of isolated heart allografts as well as other tolerance-resistant organs.