SEARCH

SEARCH BY CITATION

References

  • 1
    Sicherer SH, Sampson HA. Food allergy. J Allergy Clin Immunol 2010;125:116125.
  • 2
    Mousallem T, Burks AW. Immunology in the Clinic Review Series; focus on allergies: immunotherapy for food allergy. Clin Exp Immunol 2012;167:2631.
  • 3
    Sudowe S, Montermann E, Steitz J, Tüting T, Knop J, Reske-Kunz AB. Efficacy of recombinant adenovirus as vector for allergen gene therapy in a mouse model of type I allergy. Gene Ther 2002;9:147156.
  • 4
    Zarei S, Leuba F, Arrighi J-F, Hauser C, Piguet V. Transduction of dendritic cells by antigen-encoding lentiviral vectors permits antigen processing and MHC class I–dependent presentation. J Allergy Clin Immunol 2002;109:988994.
  • 5
    Albrecht M, Suezer Y, Staib C, Sutter G, Vieths S, Reese G. Vaccination with a modified vaccinia virus Ankara-based vaccine protects mice from allergic sensitization. J Gene Med 2008;10:13241333.
  • 6
    Sutter G, Moss B. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci USA 1992;89:1084710851.
  • 7
    Okeke MI, Nilssen O, Traavik T. Modified vaccinia virus Ankara multiplies in rat IEC-6 cells and limited production of mature virions occurs in other mammalian cell lines. J Gen Virol 2006;87:2127.
  • 8
    Hebben M, Brants J, Birck C, Samama J-P, Wasylyk B, Spehner D et al. High level protein expression in mammalian cells using a safe viral vector: modified vaccinia virus Ankara. Protein Expr Purif 2007;56:269278.
  • 9
    von Krempelhuber A, Vollmar J, Pokorny R, Rapp P, Wulff N, Petzold B et al. A randomized, double-blind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE. Vaccine 2010;28:12091216.
  • 10
    Vollmar J, Arndtz N, Eckl KM, Thomsen T, Petzold B, Mateo L et al. Safety and immunogenicity of IMVAMUNE, a promising candidate as a third generation smallpox vaccine. Vaccine 2006;24:20652070.
  • 11
    Verheust C, Goossens M, Pauwels K, Breyer D. Biosafety aspects of modified vaccinia virus Ankara (MVA)-based vectors used for gene therapy or vaccination. Vaccine 2012;30:26232632.
  • 12
    Song G-Y, Srivastava T, Ishizaki H, Lacey SF, Diamond DJ, Ellenhorn JDI. Recombinant modified vaccinia virus ankara (MVA) expressing wild-type human p53 induces specific antitumor CTL expansion. Cancer Invest 2011;29:501510.
  • 13
    Berthoud TK, Fletcher H, Porter D, Thompson F, Hill AVS, Todryk SM. Comparing human T cell and NK cell responses in viral-based malaria vaccine trials. Vaccine 2009;28:2127.
  • 14
    Hawkridge T, Scriba TJ, Gelderbloem S, Smit E, Tameris M, Moyo S et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J Infect Dis 2008;198:544552.
  • 15
    Kreijtz JHCM, Suezer Y, de Mutsert G, van Amerongen G, Schwantes A, van den Brand JMA et al. MVA-based H5N1 vaccine affords cross-clade protection in mice against influenza A/H5N1 viruses at low doses and after single immunization. PLoS ONE 2009;4:e7790.
  • 16
    Gómez CE, Nájera JL, Perdiguero B, García-Arriaza J, Sorzano COS, Jiménez V et al. The HIV/AIDS vaccine candidate MVA-B administered as a single immunogen in humans triggers robust, polyfunctional, and selective effector memory T cell responses to HIV-1 antigens. J Virol 2011;85:1146811478.
  • 17
    Ramírez JC, Gherardi MM, Esteban M. Biology of attenuated modified vaccinia virus Ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune responses in comparison with the Western Reserve strain and advantages as a vaccine. J Virol 2000;74:923933.
  • 18
    Liu L, Chavan R, Feinberg MB. Dendritic cells are preferentially targeted among hematolymphocytes by Modified Vaccinia Virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo. BMC Immunol 2008;9:15.
  • 19
    Waibler Z, Anzaghe M, Ludwig H, Akira S, Weiss S, Sutter G et al. Modified vaccinia virus Ankara induces Toll-like receptor-independent type I interferon responses. J Virol 2007;81:1210212110.
  • 20
    Kremer M, Suezer Y, Volz A, Frenz T, Majzoub M, Hanschmann K-M et al. Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox. PLoS Pathog 2012;8:e1002557.
  • 21
    El-Gogo S, Staib C, Meyr M, Erfle V, Sutter G, Adler H. Recombinant murine gammaherpesvirus 68 (MHV-68) as challenge virus to test efficacy of vaccination against chronic virus infections in the mouse model. Vaccine 2007;25:39343945.
  • 22
    Burggraf M, Nakajima-Adachi H, Hachimura S, Ilchmann A, Pemberton AD, Kiyono H et al. Oral tolerance induction does not resolve gastrointestinal inflammation in a mouse model of food allergy. Mol Nutr Food Res 2011;55:14751483.
  • 23
    Kaul S, Lüttkopf D, Kastner B, Vogel L, Höltz G, Vieths S et al. Mediator release assays based on human or murine immunoglobulin E in allergen standardization. Clin Exp Allergy 2007;37:141150.
  • 24
    Schülke S, Burggraf M, Waibler Z, Wangorsch A, Wolfheimer S, Kalinke U et al. A fusion protein of flagellin and ovalbumin suppresses the TH2 response and prevents murine intestinal allergy. J Allergy Clin Immunol 2011;128:13401348.
  • 25
    Kass-Eisler A, Falck-Pedersen E, Elfenbein DH, Alvira M, Buttrick PM, Leinwand LA. The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Ther 1994;1:395402.
  • 26
    Amato RJ, Hawkins RE, Kaufman HL, Thompson JA, Tomczak P, Szczylik C et al. Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled phase III study. Clin Cancer Res 2010;16:55395547.
  • 27
    Döhner K, Radtke K, Schmidt S, Sodeik B. Eclipse phase of herpes simplex virus type 1 infection: efficient dynein-mediated capsid transport without the small capsid protein VP26. J Virol 2006;80:82118224.
  • 28
    Flechsig C, Suezer Y, Kapp M, Tan SM, Löffler J, Sutter G et al. Uptake of antigens from modified vaccinia Ankara virus-infected leukocytes enhances the immunostimulatory capacity of dendritic cells. Cytotherapy 2011;13:739752.
  • 29
    Nörder M, Becker PD, Drexler I, Link C, Erfle V, Guzmán CA. Modified vaccinia virus Ankara exerts potent immune modulatory activities in a murine model. PLoS ONE 2010;5:e11400.
  • 30
    Gasteiger G, Kastenmuller W, Ljapoci R, Sutter G, Drexler I. Cross-priming of cytotoxic T cells dictates antigen requisites for modified vaccinia virus Ankara vector vaccines. J Virol 2007;81:1192511936.
  • 31
    Pascutti MF, Rodríguez AM, Falivene J, Giavedoni L, Drexler I, Gherardi MM. Interplay between modified vaccinia virus Ankara and dendritic cells: phenotypic and functional maturation of bystander dendritic cells. J Virol 2011;85:55325545.
  • 32
    Tang Y, Guan SP, Chua BYL, Zhou Q, Ho AWS, Wong KHS et al. Antigen-specific effector CD8 T cells regulate allergic responses via IFN-γ and dendritic cell function. J Allergy Clin Immunol 2012;129:16111620.
  • 33
    Staib C, Sutter G. Live viral vectors: vaccinia virus. Methods Mol Med 2003;87:5168.
  • 34
    Staib C, Drexler I, Sutter G. Construction and isolation of recombinant MVA. Methods Mol Biol 2004;269:77100.